C. R. Helmrich, C. Bartnik, J. Brandenburg, A. Wieckowski, B. Bross, and D. Marpe

presented at VCIP 2023

A Constrained Variable Bit Rate (CVBR) Algorithm for VVenC, an Open VVC Encoder Implementation

INTRODUCTION

Two basic video coding approaches in industry:

- rate control (RC): encoder control using R_{trat}
- constant quality: encoder control using QP_{seq}
 For smooth playback at restricted bandwidths, staying below a max. rate shall be guaranteed
 up to mid 2023, VVenC didn't enforce a R_{max}

CONTRIBUTION

Rate capping extension for RC modes in VVenC • via $R_{max} \ge 1.5 \cdot R_{trgt}$, using frame picture stats Stats: motion info from MCTF, rate info from RC • MCTF: motion compensated temporal filter¹

- RC: rate estimates from fast preencoding pass
- stats are readily available → low complexity

 QP_{seq} : sequence quantization parameter, similar to CRF, 1: A. Wieckowski et al., PCS 2022.

2-step *R-QP* model based on 1st-pass frame data $q''_{f} = \left[q'_{f} + c_{\text{high}} \cdot \max(0; QP_{\text{start}} - q'_{f}) + o_{l} + \frac{1}{2}\right]$ with o_{i} 2nd-pass corrective $q'_{f} = q_{f} - c_{\text{low}} \cdot \sqrt{\max(1; q_{f})} \cdot \log_{2}\left(\frac{r''_{f}}{r_{f}}\right)$ of all past frames *f* at level *l*

Second-pass target rates r''_f depend on RC mode

- GOP-wise RC: each Intra period to exhibit R_{trgt}
 does not spend more rate on difficult scenes
- file based RC: entire video shall average at R_{trgt}
 may spend too much rate on difficult scenes

CVBR CODING WITH VVENC

Goal: cap at R_i = rate averaged across Intra period • ① we don't know if users measure in same way Approach: limit GOP-wise target bit count to g_{max} $g_{max} = \frac{R_{max}}{I_{ps}} \cdot \frac{G \cdot I}{I + m_0 \cdot G} \cdot \begin{cases} 1 + m_0 & \text{for I-GOPs}^2 \\ 1 & \text{otherwise} \end{cases}$ with g: GOP's bit count, G: GOP size, I: Intra-frame period

• $m_0 \approx 1$ on little, $\approx 1/32$ on strong motion • I-GOPs use at most 2·rate of non-I-GOPs **GOP-wise RC**: temporarily allow more rate • find max. of MCTF motion errors in GOP • save max. of last 8 GOPs and their mean • spend via r_f'' more rate when max \gg mean **File based RC**: cap based on 1st-pass rate r• if GOP-rate is reduced, store saved bits Δ • sum up all Δ in video, spend them evenly in all non-reduced GOPs, reduce again \odot In both RCs, ensure o_I is chosen s.t. $g \leq g_{max}$ **EVALUATION** $R_{max} \approx 2 \cdot R_{trgt}$ is good tradeoff: details at 3

where $m_0 = r'_{f_0} / g'_{f_0}$: I-frame to GOP bit ratio

2: I-GOP: group of pictures containing Intra-frame, 3: www.ecodis.de/ratecap.htm

Averaged Bjøntegaard delta-rate (BDR) and rate accuracy (BitErr) results, using VVenC preset *fast* with XPSNR based visual opt., commit ec61375 as reference:

GOP-wise RC: $R_{\text{max}} = \infty$: BDR -1.90%, BitErr 2.72%; $R_{\text{max}} = 2R_{\text{trgt}}$: BDR -2.00%, BitErr 2.52%; $R_{\text{max}} = 1.5R_{\text{trgt}}$: BDR -1.98%, BitErr 2.90% **File based RC:** $R_{\text{max}} = \infty$: BDR -0.46%, BitErr 0.90%; $R_{\text{max}} = 2R_{\text{trgt}}$: BDR 0.31%, BitErr 1.19%; $R_{\text{max}} = 1.5R_{\text{trgt}}$: BDR 3.95%, BitErr 2.94%