SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 1

Quantization and Entropy Coding in the
Versatile Video Coding (VVC) Standard

Heiko Schwarz, Muhammed Coban, Marta Karczewicz, Tzu-Der Chuang, Frank Bossen, Senior Member, IEEE,
Alexander Alshin, Jani Lainema, and Christian R. Helmrich, Senior Member, IEEE

Abstract—The paper provides an overview of the quantization
and entropy coding methods in the Versatile Video Coding (VVC)
standard. Special focus is laid on techniques that improve coding
efficiency relative to the methods included in the High Efficiency
Video Coding (HEVC) standard: The inclusion of trellis-coded
quantization, the advanced context modeling for entropy coding
transform coefficient levels, the arithmetic coding engine with
multi-hypothesis probability estimation, and the joint coding of
chroma residuals. Beside a description of the design concepts,
the paper also discusses motivations and implementation aspects.
The effectiveness of the quantization and entropy coding methods
specified in VVC is validated by experimental results.

Index Terms—Versatile Video Coding (VVC), quantization,
entropy coding, transform coefficient coding, video coding.

I. INTRODUCTION

HE Versatile Video Coding (VVC) standard [1], [2] is the
most recent joint video coding standard of the ITU-T and
ISO/IEC standardization organizations. It was developed by
the Joint Video Experts Team (JVET), a partnership between
the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG). VVC was
technically finalized in July 2020 and will be published as
ITU-T Rec. H.266 and ISO/IEC 23090-3 (MPEG-I Part 3).
The primary objective of the new VVC standard is to pro-
vide a significant increase in compression capability compared
to its predecessor, the High Efficiency Video Coding (HEVC)
standard [3]. At the same time, VVC includes design features
that make it suitable for a broad range of video applications.
In addition to conventional video applications, it particularly
addresses the coding of video with high dynamic range and
wide color gamut, computer-generated video (e. g., for remote
screen sharing or gaming), and omnidirectional video and it
supports adaptive streaming with resolution switching, scalable

Manuscript uploaded August 22, 2020.

H. Schwarz and C. R. Helmrich are with the Fraunhofer Institute for
Telecommunications, Heinrich Hertz Institute, 10587 Berlin, Germany. H.
Schwarz is also with the Institute of Computer Science, Free University
of Berlin, 14195 Berlin, Germany (e-mail: heiko.schwarz@hhi.fraunhofer.de;
christian.helmrich@hhi.fraunhofer.de).

M. Coban and M. Karczewicz are with Qualcomm Technologies Inc.,
San Diego, CA 92121, USA (e-mail: mcoban@qti.qualcomm.com; martak @
qti.qualcomm.com).

T.-D. Chuang is with MediaTek Inc., Hsinchu 30078, Taiwan (e-mail:
peter.chuang @mediatek.com).

F. Bossen is with Sharp Electronics of Canada Ltd., Mississauga, ON L4Z
1W9, Canada (e-mail: fbossen@sharpsec.com).

A. Alshin is with Intel Russia, Moscow, 121614 (e-mail: alexander.alshin @
intel.com).

J. Lainema is with Nokia Technologies, 33101 Tampere, Finland (e-mail:
jani.lainema@nokia.com).

coding, and tile-based streaming for immersive applications.
Despite the rich set of coding tools and functionalities, partic-
ular care was taken to enable decoder implementations with
reasonable complexity in both hardware and software.

Similar to all previous video coding standards of the ITU-T
and ISO/IEC since H.261 [4], the VVC design follows the
general concept of block-based hybrid video coding. The video
pictures are partitioned into rectangular blocks and each block
is predicted by intra- or inter-picture prediction. The resulting
prediction error blocks are coded using transform coding,
which consists of an orthogonal transform, quantization of
the transform coefficients, and entropy coding of the resulting
quantization indexes. Quantization artifacts are attenuated by
applying so-called in-loop filters to reconstructed pictures
before they are output or used as references for inter-picture
prediction of following pictures.

Although VVC uses the same coding framework as its
predecessors, it includes various improvements that eventually
result in a substantially improved compression performance.
One of the most prominent changes in comparison to HEVC
is the very flexible block partitioning concept [5] that supports
non-square blocks for coding mode selection, intra-picture
prediction, inter-picture prediction, and transform coding and,
thus, impacts the design of many other aspects. In the present
paper, we describe modifications to quantization and entropy
coding. The coding efficiency improvements in this area can
be mainly attributed to the following four features:

« the support of trellis-coded quantization (TCQ);

o the advanced entropy coding of quantization indexes
suitable for both TCQ and scalar quantization;

« the binary arithmetic coding engine with multi-hypothesis
probability estimation;

« the support of joint chroma residual coding.

Theses changes in quantization and entropy coding together
with a block-adaptive transform selection [6] eventually led
to a substantially increased efficiency of the transform coding
design in VVC compared to that of HEVC.

The paper is organized as follows. Section II describes the
quantization in VVC with special focus on the TCQ design.
The entropy coding of quantization indexes including context
modeling is presented in Section III. Section IV discusses the
improvements of the core binary arithmetic coding engine.
The joint coding of chroma prediction errors is described in
Section V. Experimental results validating the effectiveness
of the quantization and entropy coding tools are provided in
Section VI, and Section VII concludes the paper.

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 2

II. QUANTIZATION

Quantization is an irreversible mapping of input values to
output values. For the specification in image and video coding
standards, it is split into a non-normative encoder mapping
of input samples to integer guantization indexes, which are
also referred to as levels and are transmitted using entropy
coding, and a normative decoder mapping of the quantization
indexes to reconstructed samples. The aim of quantization is to
decrease the bit rate required for transmitting the quantization
indexes while maintaining a low reconstruction error.

In hybrid video coding, quantization is generally applied
to transform coefficients that are obtained by transforming
prediction error blocks (also referred to as residual blocks)
using an approximately orthogonal transform. The transforms
used have the property that, for typical residual blocks, the
signal energy is concentrated into a small number of transform
coefficients. This has eventually the effect that simple scalar
quantizers are more effective in the transform domain than
in the original sample space [7]. In particular for improving
the coding efficiency for screen content [8], where residual
blocks often have different properties, VVC also provides a
transform skip (TS) mode, in which no transform is applied,
but the residual samples are quantized directly.

Similarly as in AVC (Advanced Video Coding) [9] and
HEVC, the quantizer design in VVC is based on scalar quan-
tization with uniform reconstruction quantizers. But VVC also
includes two extensions that can improve coding efficiency at
the cost of an increased encoder complexity.

A. Basic Design: Uniform Reconstruction Quantizers

In scalar quantization, the reconstructed value t;c of each
input coefficient (or sample) t; depends only on the associ-
ated quantization index qj. Uniform reconstruction quantizers
(URQs) are a simple variant, in which the set of admissible
reconstruction values is specified by a single parameter, called
quantization step size Ay. The decoder operation is given by
a simple scaling, t) = Ay, gi. Similar as previous ITU-T and
ISO/IEC video coding standards, VVC supports quantization
weighting matrices by which the quantization step size can be
varied across the transform coefficients of a block. Conceptu-
ally, the step size for a coefficient ¢, is given by Ax = ai A,
where o, is a weighting factor that depends on the location
of the coefficient ¢, inside the transform block and A is
a quantization step size, which can be selected on a block
basis among a pre-defined set of candidates. The chosen A is
indicated by a non-negative integer value referred to as quanti-
zation parameter (QP). VVC uses an exponential relationship
between A and QP, which was originally introduced in AVC.
When neglecting rounding operations, the reconstruction of
transform coefficients can be written as

th =y - 2@=D/6 g,)

An increase of the quantization parameter by one corresponds
to an increase of about 12% for the quantization step size.
For avoiding reconstruction mismatches, the entire VVC
decoding process is specified using exact integer operations
(similar to AVC and HEVC). In comparison to the idealized

case with orthogonal transforms, the inverse transform for a
W x H block includes an additional scaling by /W H -28-15,
where B represents the bit depth of the color component in
bits per sample. Consequently, the scaling in the decoder has
to approximately generate reconstructed coefficients

th = ay - 9(QP—4)/6 915—B (WH)’l/z -k,)

which are then used as input values to the inverse transform.
With g = [% log,WH |, v = 28 — logo, WH, p = |QP/6], and
m = QP %6, where [-] and |-| denote the ceiling and floor
functions, respectively, and % denotes the modulus operator,
the mapping g — t}, can be rewritten according to

t;i; — (24Oék) . (2(32+3’y+m)/6) .9P . 25—ﬁ—B - Q- (3)

Since both the width W and the height H of a transform block
are integer powers of two, v € {0, 1} is a binary parameter.
For obtaining a realization with integer operations, the two
terms in parenthesis are rounded to integer values and the
multiplication with 2°~#~B is approximated by a bit shift.
The VVC standard specifies the reconstruction according to

te = (wi - (a[y][m] < p)-qr + (1 < b)>1)) >b, ()

where < and >> denote bit shifts to the left and right (in two’s
complement arithmetic), respectively, and b = B + 8 — 5. The
2x6 array a[y][m] specifies integer values that approximate
the terms 2(32+37+m)/6 1t is given by a = {{40, 45, 51,
57, 64, 72}, {57, 64, 72, 80, 90, 102}}. The integer values
wy, = round(2*ay,), with wy, € [1;255), are called scaling list.
As further detailed in Section II-F, scaling lists for different
block types can be specified in a corresponding high-level
data structure. If scaling lists are not used, the values wy, are
inferred to be equal to 16, which corresponds to Ay = A.

In transform skip mode, no inverse transform is applied and,
hence, no additional scaling factor has to be included in the
reconstruction process of residual samples rj. Furthermore,
the concept of scaling lists is not applicable. An integer
realization of the reconstruction 7}, = A - g is obtained by
using (4) with wg = 16, v = 0, and b = 10, which yields

. = ((a[0][m] < (p+4)) - qp +512) >10. (5)

B. Quantization Improvements

If one only considers scalar quantization, the restriction to
URQs has no negative impact on coding efficiency. When
combined with a suitable entropy coding and encoder de-
cision, URQs can achieve virtually the same rate-distortion
efficiency as optimal scalar quantizers for typical distributions
of transform coefficients [10], [11]. However, even for statis-
tically independent transform coefficients, the usage of scalar
quantization results in an unavoidable loss in coding efficiency
relative to the fundamental rate-distortion bound. This gap can
only be reduced by using vector quantizers (VQs) [12].

VVC includes two advanced techniques for quantizing
transform coefficients that are referred to as sign data hiding
and trellis-coded quantization. Both have properties of VQs,
but also represent simple extensions of URQs and require
only minimal changes of the decoding process. Since these

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 3

-2 -1 1 2
Qo .

-2 -1 0 1 2
L 1l 99 9 1 9
—4A, —3Ar —2Ar —Ax O Ar 2Ar 3AR

T o

4N,

Fig. 1. Scalar quantizers QQo and Q1. The circles indicate the reconstruction
levels and the labels represent the associated quantization indexes.

approaches cannot utilize statistical dependencies of the input
data, the basic concept of transform coding is not modified.
The dependencies between residual samples are exploited by
applying the quantization in the transform domain and by
using an appropriate entropy coding method.

C. Sign Data Hiding

Sign data hiding (SDH) [13]-[15] is a technique that is
already included in HEVC and hasn’t been modified in the
context of VVC. Consider a block of reconstructed transform
coefficients {¢} } that is represented by a corresponding block
of quantization indexes {qy}, with ¢} = Ayqx. The basic idea
of SDH is to omit the coding of the sign for one nonzero
index in {qi} and instead derive it from the parity of the sum
of absolute values |gx|. In comparison to scalar quantization
with the same step sizes Ag, SDH saves about 1 bit per block,
which for suitably large blocks outweighs the average increase
in distortion. But note that an encoder has to carefully select
quantization indexes {qi} that obey the sign hiding condition
in order to achieve coding efficiency improvements.

In HEVC and VVC, SDH is applied on the basis of so-called
coefficient groups (CGs), which represent groups of successive
levels g in coding order (see Section III); in most cases, they
include 16 levels. If the difference between the scan indexes of
the last and first nonzero level (in coding order) inside a CG
is greater than 3, the sign for the last nonzero level of the CG
is not coded but derived based on the sum of absolute values,
> kecq [qr|> where odd sums indicate negative values. At the
decoder side, SDH does not require any change of the scaling
in (4), only the entropy coding of sign flags is modified.

D. Trellis-Coded Quantization

The second improvement [16], [17] employs the concept of
trellis-coded quantization (TCQ), first described in [18]. Since
the reconstruction process specified in the standard does not
use trellis structures, the TCQ design included in VVC is also
referred to as dependent quantization. TCQ was well studied
in the 1990s and it was demonstrated that it can significantly
outperform the best scalar quantizers [18]-[21]. Due to its
simple structure, it can be applied for quantizing vectors of
arbitrary dimensions.

From a decoder perspective, TCQ specifies two scalar quan-
tizers and a procedure for switching between these quantizers.
The two scalar quantizers (Jg and @1 used in VVC are
illustrated in Fig. 1. Similar to URQs, the reconstruction levels
of both quantizers represent integer multiples of a quantization
step size Ay. The quantizer @y includes the even multiples of
Ay, and the quantizer Q1 includes the odd multiples of Ay, and,
in addition, the value of zero. Note that both quantizers are

TABLE I
STATE TRANSITION AND QUANTIZER SELECTION

next state sy 1

current quantizer
state s, used for ¢}, (g &1) =0 (qp&1)=1
0 Qo 0 2
1 Qo 2 0
2 Q1 1 3
3 Q 3 1

symmetric and include the reconstruction level equal to zero.
This deviation from conventional TCQ designs improves the
coding efficiency at low and medium rates without requiring
significant changes of the entropy coding (in comparison to
using URQs). For both quantizers Qg and @)1, the selected
reconstruction levels ¢}, are indicated by integer quantization
indexes g, as illustrated by the labels in Fig. 1.

In contrast to scalar quantization, the transform coefficients
of a block have to be reconstructed in a pre-defined order,
which shall be indicated by the index k. The reconstruction
order is chosen to be equal to the coding order of quantization
indexes qi, which additionally enables the exploitation of
certain TCQ properties in the entropy coding (see Section III).
Given the reconstruction order, the procedure for switching
between the two quantizers (Qyp and ()1 can be specified by
a state machine with 25 states (X > 2), where the state s
for a current coefficient ¢; uniquely determines the quantizer
used. The state sy for the next coefficient 51 is determined
by the current state s; and the parity pr = (qx & 1) of the
current quantization index ¢ (the operator & represents a bit-
wise and in two’s complement arithmetic). Even though the
achievable coding efficiency increases with number of states
[18], [22], the TCQ design in VVC uses the minimal number
of 4 states for limiting the required encoder complexity. The
state transition and quantizer selection are given in Table I
The initial state sq is always set equal to zero.

The reconstruction of transform coefficients ¢} is specified
as follows: First, the quantization indexes g for a block are
mapped to integer multiplication factors g;; for the correspond-
ing quantization step sizes Ay. And then, the multiplication
. = g A is approximated as in the conventional URQ case.
For a block with IV transform coefficients, the calculation of
the factors ¢; can be specified by the following algorithm,
where stateTransTable represents the 4 x 2 state transition table
given in Table I and sgn(-) denotes the signum function

S0 = 0
for k=0to N —1do

G =2-qr — (s > 1) - sgn(qr)

Sk+1 = stateTransTable[si |[qx & 1]
end for

The distance between two neighboring reconstruction levels
in the quantizers Qo and ()1 is in most cases 2Aj, and
not Ay as for URQs. For obtaining approximately the same
reconstruction quality for a given QP, regardless of whether
TCQ is enabled, the quantization step sizes Ay have to be
scaled for TCQ. As verified experimentally, a scaling factor
of 275/6, corresponding to a QP decrease of 5, represents

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 4

N—3 N—-2 N-1 end
---0

P
-7

start k=0 1 2 3 4
uncoded — 0 :

sk:O —
sk=1 —r
Sk=2 —

Sk:3 —

Fig. 2. Trellis structure used in the VIM reference encoder [28].

a suitable choice. Hence, when TCQ is enabled, the scaling
. = qi Ay is specified by re-using (4), but with g being
replaced with ¢, and modified parameters b= B + 3 — 4,
p=|(QP+1)/6], and m = (QP + 1)%6.

For supporting TCQ at the decoder side, only three changes
are required: (1) An additional mapping from levels ¢ to
multiplication factors ¢;; (2) a modification of the scaling
parameters b, p, and m; and (3) a state-dependent context
selection, which will be described in Section III.

E. Encoder Operation

Even though the quantization process at the encoder, i.e.,
the algorithm for selecting levels g, is outside the scope of the
standard, it has a significant impact on coding efficiency. State-
of-the-art video encoders often use algorithms that select the
levels ¢ = {qx} for a block by minimizing a Lagrangian func-
tion J(q) = D(q) + AR(q) of the MSE distortion D(q) and
the number of bits R(q) required for transmitting the levels
[23]-[25]. The Lagrange multiplier A determines the operating
point and is typically set depending on a base QP. These
approaches take into account dependencies between levels gy,
that are introduced in the entropy coding and are referred to
as rate-distortion optimized quantization (RDOQ). An RDOQ
algorithm suitable for URQs and the entropy coding design in
HEVC and VVC is described in [26]. This algorithm is also
implemented in the reference encoders HM [27] and VTM [28]
for HEVC and VVC, respectively.

1) Sign Data Hiding: When SDH is enabled, an encoder
has to ensure that the sign hiding condition (the parity of the
sum of absolute levels correctly indicates the sign of the last
nonzero index) is met for all CGs. This is typically achieved as
follows [15]. First the RDOQ algorithm for URQs is applied.
Then, in a second step, for all CGs for which the sign condition
is violated, one of the levels gy is increased or decreased by
one. The corresponding level as well as the direction of the
change are selected by minimizing the Lagrange cost J(q).

2) Trellis-Coded Quantization: The quantizer switching in
TCQ introduces dependencies, which have to be taken into
account for achieving a good coding efficiency. The potential
transitions between the quantizers ()¢ and () can be elegantly
represented by a trellis with 4 states per coefficient [18]. The
selection of indexes g for a block is then equivalent to finding
the path with minimum J(q) through the trellis.

For a better consideration of certain entropy coding aspects
(coding of last position), the algorithm [17] implemented in
the VTM software uses a trellis with 5 states, as shown in
Fig. 2. In addition to the states 0-3, it includes an “uncoded”
state, which represents levels equal to O that precede the first
nonzero level in coding order. Note that the start and end

states si_1 and s, respectively, of a connection between two
nodes uniquely determine the quantizer used and the parity
of the associated level qi. For each connection, the candidate
level ¢ that minimizes the difference |t — ¢} (gx)| between
the original and reconstructed coefficients is determined first.
Then, the final levels g = {q; } for a block are selected among
these candidates by applying the Viterbi algorithm!' [29].
The cost assigned to a connection represents the contribution
Dy(qr) + ARy (qi|) of the associated candidate ¢ to the
overall cost J(q). Preceding levels in the trellis paths are taken
into account for calculating the rate terms R(qy|-).

There are several possibilities for speeding up the encoding
process, for example, by approximating the Lagrange costs
or pruning unlikely connections. The VTM reference encoder
uses a simple method that significantly reduces the encoder run
time for typical video bit rates, at which most high-frequency
coefficients are small compared to the quantization step size.
In an initial step, the first original coefficient ¢; in coding order
with |t;] > A;/2 is determined. The levels for all coefficients
that precede this coefficient in coding order are set equal to
zero and the Viterbi algorithm starts at k = 1.

F. Quantization Control

As described above, VVC supports three quantizer designs
(URQs, SDH, and TCQ) with different trade-offs between
achievable coding efficiency and encoder complexity. An
encoder can select the one that best suits the application
requirements. The choice is indicated in the slice header.

For enabling both block-based rate control algorithms and
perceptually optimized encoding approaches (e. g., [30]), the
QPs can be selected on a block basis. The corresponding
blocks are called quantization groups (QGs); their sizes are in-
dicated in the picture header. The QPs for the luma component
are coded differentially. For each QG that contains nonzero
levels, the difference between the QP used and a prediction
derived from spatially neighboring QGs is transmitted. For the
chroma components, the QPs are derived from the luma QP
of the co-located block via look-up tables. There are three
different tables, one for the Cb component, one for the Cr
component, and another one that is explicitly used for the
JCCR modes with |m| = 2 (see Section V). For supporting a
wide range of transfer functions and color formats, an encoder
has the freedom to choose suitable look-up tables. They are
defined by piece-wise linear mapping functions that are coded
in the sequence parameter set. VVC supports QP values in the
range from 0 to 63 4+ 6(B — 8), inclusive, where B denotes
the bit depth of the corresponding color component.

As noted above, the quantization of transform coefficients
can be additionally controlled by weighting matrices, which
are specified using scaling lists. The main motivation is that the
usage of frequency-dependent quantization step sizes can help
an encoder to better take the contrast sensitivity behavior of
human vision into account. In total, VVC includes 28 scaling
lists, each defining weighing factors for a 2x2, 4x4, or §x 8

'Due to complicated dependencies in the entropy coding, the Viterbi
algorithm does not yield the optimal solution, but it still provides a very
good trade-off between coding efficiency and implementation complexity.

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 5

array of coefficients. The scaling lists can be transmitted in a
high-level syntax structure referred to as adaptation parameter
set; similarities between the different lists are exploited using
predictive coding. The list that is used for a transform block is
determined by the color component, the prediction mode, and
the maximum of the width and height of the block. For block
sizes not equal to 2x 2, 4x4, or 8 x &, the weighting matrices
are resampled using nearest neighbor interpolation.

III. TRANSFORM COEFFICIENT CODING

Similarly as HEVC, VVC employs context-based adaptive
binary arithmetic coding (CABAC) for entropy coding of all
low-level syntax elements. Non-binary syntax elements are
mapped to binary codewords. The bijective mapping between
symbols and codewords, for which typically simple structured
codes are used, is called binarization. The binary symbols, also
called bins, of both binary syntax elements and codewords for
non-binary data are coded using binary arithmetic coding. The
core coding engine, which is further discussed in Section IV,
supports two operating modes: A regular mode, in which the
bins are coded with adaptive probability models, and a less
complex bypass mode that uses fixed probabilities of 1/2. The
adaptive probability models are also called contexts and the
assignment of probability models to individual bins is referred
to as context modeling. Note that both the binarization and the
context modeling used have a significant impact on coding
efficiency. The required encoder and decoder complexities
primarily increase with the number of context-coded bins (i. e.,
bins coded in regular mode). But they are also affected by
other aspects such as the degree of dependencies between
successive bins, the complexity of the context modeling used,
or the frequency with which a switching between the regular
and bypass modes of the arithmetic coding engine occurs.
The entropy coding of quantization indexes for transform
blocks is commonly referred to as transform coefficient coding.
Since, at typical video bit rates, transform coefficient levels
consume the major part of the total bit rate, it is important to
find a reasonable trade-off between coding efficiency and im-
plementation complexity. The basic concept of the transform
coefficient coding in VVC is similar to the coefficient coding
specified in HEVC [15]:
1) A coded block flag (CBF) indicates whether a transform
block includes any nonzero levels;

2) For blocks with CBF equal to 1, the « and y coordinate of
the last nonzero level in forward scan order is transmitted;

3) Starting from the indicated last position, the levels are
transmitted in reverse scan order, organized into so-called
coefficient groups (CGs). The bins for a CG are coded in
multiple passes, where all bypass-coded bins are grouped
together in order to enable efficient implementations.

Since VVC supports a larger range of transform sizes than
HEVC, some aspects of the transform coefficient coding were
generalized. In contrast to HEVC, the scan order does not
depend on the intra prediction mode as such a mode-dependent
scan was found to provide only negligible improvements and
would unnecessarily complicate the design. Moreover, the
context modeling for the bins representing levels is indepen-
dent of the block size; there are no exceptions for certain

TABLE II
COEFFICIENT GROUP SIZES FOR W X H TRANSFORM BLOCKS
width W
height H 1 2 4 8 16 32 64
1 - - - - 16x1 16x1 16x1
2 - 2x2 2x2 8X2 8x2 8x2 82
4 - 2X2 4x4 4x4 4x4 4x4 4x4
8 - 2x8 4x4 4x4 4x4 4x4 4x4
16 1x16 2x8 4x4 4x4 4x4 4x4 4x4
32 1x16 2x8 4x4 4x4 4x4 4x4 4x4
64 1x16 2x8 4x4 4x4 4x4 4x4 4x4

block shapes. But instead, the context dependency restrictions
found in HEVC are relaxed and local statistical dependencies
between levels are utilized for increasing coding efficiency.
For enabling the exploitation of certain TCQ properties, the
binarization for levels includes a parity bin and all context-
coded bins of a CG are coded in a single pass. VVC uses a
transform block based restriction on the number of context-
coded bins to keep a similar worst-case complexity as HEVC.

A. Coded Block Flag

The coded block flag (CBF) is coded in the regular mode of
the coding engine. In total, 9 contexts are used (4 for luma, 2
for Cb, and 3 for Cr). One context per component is reserved
for blocks coded in BDPCM mode (a special variant of the
transform skip mode, see [8]). For luma, two contexts are used
only for transform blocks coded in the intra sub-partitioning
mode (see [31]); here, the chosen context depends on the CBF
of the preceding luma transform block inside the same coding
unit. In order to exploit statistical dependencies between the
CBFs of the chroma components, the context for Cr blocks not
coded in BDPCM mode is selected depending on the CBF of
the co-located Cb block.

B. Coefficient Groups and Scan Order

The transform coefficient levels {q} of a W x H transform
block are arranged in a W x H matrix. For enabling a harmo-
nized processing across all block sizes (see also [15]), but also
for increasing coding efficiency for transform blocks, in which
the signal energy is concentrated into transform coefficients
that correspond to low horizontal or low vertical frequencies,
transform blocks are partitioned into coefficient groups (CGs).
As further detailed in Section III-D, the levels for each CG are
coded in a unified manner using multiple scan passes. Since
VVC also supports block sizes with widths and heights less
than 4, the shape of CGs depends on the transform block size
as shown in Table II. For transform blocks with at least 16
coefficients, the CGs always include 16 levels; for smaller
blocks, CGs of 2x2 levels are used.

The coding order of CGs is given by the reverse diagonal
scan illustrated in Fig. 3. Independent of the CG size, the CG
diagonals are processed from the bottom right to the top left
of a transform block, where each diagonal is scanned in down
left direction. For limiting the worst-case decoder complexity,
high-frequency coefficients of large transforms are forced to
be equal to zero [6]. Nonzero quantization indexes can only

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 6

NI R e A A AR,

[1]

zero-out
ey dr a4 region
@ 4L [1]
Fig. 3. Illustration of the reverse diagonal scan: Coding order of CGs in (a)

8% 16 blocks, (b) 1616 blocks, (c) 32x 16 blocks, and (d) 64x16 blocks.
The scan shown in (b) also illustrates the coding order of levels in 4x4 CGs.

LSS

K

TABLE III

BINARIZATION FOR COORDINATES OF LAST COEFFICIENT POSITION
coordinate prefix (TU) suffix (FL)
0 0) - +—1
1 1 (0) - «— 2
2 110 -
3 1110 - «— 4
4-5 11110 xo
6-7 111110 o +— 8
8-11 1111110 ToT1
12-15 11111110 ToT1 <+~ 16
16-23 111111110 ToT1T2
24-31 111111111 zroxr1iTe 4 32

be present in a max(W, 32) x max(H, 32) region at the top-
left of a transform block?. Hence, CGs outside this region are
not coded and thus excluded from the scan as is illustrated in
Fig. 3d. The coding order of levels inside CGs is specified by
the same reverse diagonal scan.

C. Last Significant Coefficient Position

Similar as in HEVC, the explicit coding of zero quantization
indexes for coefficients related to high-frequency components
is eliminated by transmitting the position of the last nonzero
level in forward scan order (which is the first nonzero level in
coding order). This does not only increase coding efficiency,
but also reduces the number of context-coded bins.

The x and y coordinates corresponding to the column and
row number, respectively, in the matrix of coefficient levels
are transmitted independently of each other. As shown in
Table III, each component is represented by a combination
of a prefix codeword and a (possibly empty) suffix codeword.
The prefix part specifies an interval of values. It is binarized
using truncated unary (TU) binarization and the bins are coded
in regular mode. The prefix part indicating the last interval of
the non-zero-out region of a transform block is truncated. That
means, the zero bins in parenthesis shown in Table III are not
coded if max(W, 32), for the x coordinate, or max(H,32),
for the y coordinate, is equal to the number in the last table
column. In particular, the coding of a coordinate is completely
skipped if the corresponding block width or height is equal
to 1. The suffix part represents the offset inside the interval

2 Although VVC specifies larger zero-out regions for transforms other than
the DCT-II, see [6], this does not impact the transform coefficient coding; the
syntax elements specifying the transform used are coded after the levels and
they are conditioned on the presence of nonzero levels in certain regions.

TABLE IV
CONTEXT INDICES FOR PREFIX BINS OF LAST COEFFICIENT COORDINATES
. bin index
transform
dimension 0 1 2 3 4 5 6 7 8
2 0 1
4 0 1 2
8 3 3 4 4 5
luma 16 6 6 7 71 8 8 9
32 10 10 11 11 12 12 13 13 14
64 15 15 16 16 17 17 18 18 19
2 20 21
4 20 21 22
chroma 8 20 20 21 21 22
16 20 20 20 20 21 21 21
32 20 20 20 20 21 21 21 21 22

indicated by the prefix part. It is binarized using fixed length
(FL) binarization and coded in bypass mode. Only = and y
coordinates with values greater than 3 have a suffix part.

At the decoder side, the values of the x and y coordinates
of the last significant level are derived as follows. Let vy be
the number of bins equal to 1 in the prefix codeword. Then,
the number ng, of suffix bins to be decoded is derived by

Nguf = Max (0, V?J —1) . (6)

With vg,¢ being the value specified by the suffix codeword (in
binary representation), the decoded coordinate value last is
calculated according to

QMsuf (2 + (Upre & 1)) + VUsuf,

Upre

Nguf > 0
otherwise.

last = @)

The prefix part for the x coordinate is signaled first followed
by that for the y coordinate. For grouping bypass-coded bins,
the suffix parts are coded after the prefix codewords. The prefix
bins of the x and y coordinates are coded using separate sets of
context models. Table IV lists the context offsets that indicate
the probability model used inside a set. The model chosen
depends on whether a luma or chroma block is coded, the
width or height of the transform block, and the bin number
inside the prefix codeword. Note that for large transform
blocks, where zero-out is present, the transform dimension
(and not the dimension of the non-zero-out region) is used to
derive the context offset. In total, 46 contexts (40 for luma and
6 for chroma) are used for coding the last coefficient position.

D. Binarization and Coding Order

Starting with the CG containing the last nonzero level (as
indicated by the = and y coordinates), the CGs are transmitted
in coding order (given by the reverse diagonal scan). The first
syntax element coded for a CG is the sb_coded_flag. If this
flag is equal to O, it indicates that the CG contains only zero
levels. For the first CG (which contains the last nonzero level)
and the last CG (which contains the DC level), this flag is
not coded, but inferred to be equal to 1. The sb_coded_flag
is coded in regular mode. The chosen context depends on
whether the CG to the right or the CG below contain any
nonzero levels, where separate context sets are specified for

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 7

ass 4 bypass-coded
BINARIZATION OF TEI?ITEEOYUTE LEVEL VALUES [pd?ign .e. | YPESSCOGE sign <s+ sign sign i sign sign sign sign <s* sign}
[PHSS 2 . | bypass-coded vee rem rem]
|q| o 1 2 3 4 5 6 7 8 9 10 11 — remaining regular bins > 4 —————————»
sig. 0 1 1 1 1 1 1 1 1 1 1 1 pass 1 regular-coded { pass3 bypass-coded
gt — 1 1 1 1 1 1 1 1 1 1) <
par - 01 0 1 0 1 0 1 0 1 P 5 5 g
g3 - o o0 1 1 1 1 1 1 1 1 gtl °°° gl et £ & L
rem - - - - 0 0 I 1 2 2 3 3 b (e gl S Y 63
_ sig | sig = = @) <

luma and chroma. In total, 4 contexts (2 for luma and 2 for
chroma) are used. For CGs with sb_coded_flag equal to 1, the
level values are coded as described in the following.

The binarization of coefficient levels and the coding order
of bins were chosen to support an efficient entropy coding for
both TCQ and conventional quantization. Due to the different
structures of the two scalar quantizers Qg and)1 used in
TCQ (see Fig. 1), the probability that a level is equal to 0
highly depends on the quantizer used. For exploiting this effect
in context modeling (Section III-E) and, at the same time,
grouping the context- and bypass-coded bins, the binarization
includes a dedicated parity flag that is used for determining the
TCQ state during entropy coding [32]. By additionally taking
into account the number of context-coded bins required for
achieving a good coding efficiency [33], [34] as well as the
dependencies between successive bins [35], the binarization
shown in Table V was chosen. The absolute values |g| of the
quantization indexes are mapped to the bins sig (significance),
gtl (greater than 1), par (parity), gt3 (greater than 3), and the
non-binary remainder rem.

The syntax elements for a CG are coded in multiple passes
over the scan positions. Unlike HEVC, where a single syntax
element per coefficient is coded per scan pass, VVC codes up
to 4 syntax elements per coefficient in a single pass. In the first
pass, the context-coded bins sig, gtl, par, and gt3 are coded
in an interleaved manner (i.e., all bins for a scan position are
coded before proceeding to the next scan position). Note that
the parity bin driving the TCQ state machine is included in
the first pass for enabling an efficient coding of the sig bin for
the TCQ case. For scan positions for which the sig bin can be
inferred to be equal to 1 (e. g., for the last significant position),
it is not signaled. The presence of the gz/, par, and gt3 bins is
controlled as specified in Table V. The non-binary remainders
rem are coded in a second scan pass. They are binarized using
similar parametric codes as in HEVC and the resulting bins
are coded in the bypass mode of the coding engine.

In order to increase the worst-case throughput, the number
of context-coded bins that can be coded in the first pass is
restricted [33], [35]. For allowing a suitable distribution of
context-coded bins across CGs, the limit is specified on a
transform block basis. With IV being the number of transform
coefficients in the non-zero-out region of a transform block,
the maximum allowed number of context-coded bins is set to
1.75x N. This would correspond to 28 bins per CG if the
bin budget was distributed equally among CGs, which is only
slightly higher than the limit specified in HEVC (25 bins).
The limit on context-coded bins is enforced as follows. If,
at the start of a scan position, the total number of already

last coef. coding order ——————— > top-left coef. (DC)

Fig. 4. Illustration of the scan passes (shaded bins have zero values). Before
the limit for the number of regular-coded bins is reached, the absolute levels
for a CG are coded in passes 1 and 2. After reaching the limit, the remaining
absolute values are coded in pass 3 only. The signs are coded in the last pass.

coded sig, gtl, par, and gt3 bins for the transform block
exceeds 1.75x N — 4, i.e., less than 4 bins are remaining in
the budget, the first coding pass is terminated. In that case, the
absolute values |g| for the remaining scan positions are coded
in a third scan pass. They are represented by syntax elements
decAbsLevel, which are completely coded in bypass mode.
Finally, in the fourth and last pass, the signs for all nonzero
levels of a CG are coded in bypass mode. If SDH is enabled
and the difference between the scan indexes of the last and
first nonzero level inside the CG is greater than 3, the sign
for the last nonzero level is not signaled. Fig. 4 illustrated the
organization of level data into the different scan passes.

E. Context Modeling

In order to efficiently utilize conditional statistics for arith-
metic coding, VVC uses a rather large set of context models
for coding the bins sig, gtl, par, and gt3. Beside the TCQ
state’, the context modeling also exploits statistical depen-
dencies between spatially neighboring quantization indexes,
similar to the approaches described in [36]-[38].

The context for the sig bin depends on the associated TCQ
state sg, the diagonal position d = x 4+ y of the coefficient
in transform block, and the sum of partially reconstructed
absolute levels ¢* inside the local template 7' illustrated in
Fig. 5a. The partially reconstructed absolute levels are given
by already coded bins for neighboring scan positions and can
be calculated according to

q* = sig+ gtl + par+2 - gt3. (8)

For luma blocks, the context index c;ifn indicating the adaptive
probability model used is derived according to

. 8, d<2,
Cum = 12-max(0,s,—1) + fe(T) + 4, 2<d<5, (9)
0, d>5,
with

Jae(T) = min(3, (1 —I—Zq*) > 1) (10)
T

being a function of the partially reconstructed levels ¢* inside
the local template T'. For chroma blocks, only two classes of

31t was observed [32] that the probability distribution for the sig bin actually
depends on the TCQ state and not only on the quantizer used.

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 8

T gt

(@ (b)

Fig. 5. Locate template 7' (gray) around a current scan position (black):
(a) for transform coefficient coding; (b) for transform skip residual coding.

diagonal positions (d < 2 and d > 2) are used. The context

. sig - .
index c_, is derived by

4, d<2,

0, d>2. an

e =8 -max(0, s, —1) + fuo(T) + {
When TCQ is not enabled, the value of the TCQ state sy is
set equal to 0. In total, 60 context model are used for coding
the sig bin (36 for luma and 24 for chroma).

The probability models chosen for g/, par, and gt3 do not
depend on the TCQ state, as it was found to provide only a
very minor benefit. A single shared context offset is computed
to select the probability model for these syntax elements. They
are chosen based on the diagonal position d of the coefficient
(4 classes for luma and 2 for chroma) and the sum of the
values max(0, ¢*—1) inside the local template 7". With

F(T) = min(4, Y max(0,¢" - 1)) (12)
T
being another function of the partially reconstructed levels ¢*
inside the local template T, the context indexes cpyy and Cepr
for luma and chroma blocks, respectively, are given by

1, d> 10,
6, 3<d< 10,

cum = (1) + 11, 0<d<3 (13)
16, d=0,
1, d>o,

In addition, for the last coefficient position a separate context
(given by cym = 0 and ¢y = 0) is used. For each of the gt/,
par, and gt3 bins, 32 probability models (21 for luma and 11
for chroma) are used in total.

F. Binarization of Bypass-Coded Level Data

The syntax elements rem coded in the second pass represent
remainders for absolute levels. They are only transmitted for
a scan position if the associated gt3 bin is equal to 1. With
q* being a partially reconstructed level according to (8), the
absolute value |g| of the level is given by

lg| = ¢* + 2 - rem. (15)

The remainders rem and the syntax elements decAbsLevel,
which represent absolute levels coded in the third pass, are
binarized using a combination of truncated Rice (TR) and Exp-
Golomb (EG) codes, similar to remainder values in HEVC.
The resulting bins are coded in the bypass mode of the coding
engine. Unlike HEVC, the Rice parameter for the TR codes
is derived based on the sum of absolute level values |g| in a

TABLE VI
BINARIZATION FOR SYNTAX ELEMENTS rem AND decAbsLevel

value range prefix (unary) suffix (fixed length)

Rice parameter m = 0

0 0

1 10

2 110

3 1110

4 11110

5 111110

[6;7) 1111110 x

[8;11] 11111110 xx

[2052; 4099] 11111111111111110 XXXX XXXX XXX
[4100; 32768] T1111111111111111 XXXX XXXX XXXX XXX

Rice parameter m = 3

[0;7] 0 XXX

[8;15] 10 XXX

[16; 23] 110 XXX

24; 31] 1110 XXX

[32;39] 11110 XXX

[40; 47] 111110 XXX

[48; 63] 1111110 XXXX

[64;95] 11111110 XXXX X

[8224; 16415] 1111111111111110 XXXX XXXX XXXXX

[16416;32768] 11111111111111110 XXXX XXXX XXXXX X

local template T'. The local template 7" used is the same as the
template used for context index derivation in the first coding
pass. The Rice parameter m is given by

0, sr<T,
_)1, 7<sr <14,) _ B
M= 32, 14<sr <28 WlthsT-;lq\ 529, (16)
3, st > 28,

where zg is set equal to 4 for coding the remainders rem, and
it is set equal to O for the coding decAbsLevel. The reason
for this difference is that the values of decAbsLevel specify
complete absolute levels, while the remainders rem represent
differences rem = (|q| — ¢*)/2, which have smaller values.

For each Rice parameter m, values less than vy, = 2™ - 6
are coded using only TR codes of order m (TR,,); this cor-
responds to codes with a unary prefix of length 6. For values
greater than or equal to v, the TR, codes are concatenated
with Exp-Golomb codes of order m + 1 (EG,,,+1). Table VI
shows the binarization for Rice parameters m = 0 and m = 3
with a concatenation of TR,,, and EG,,, 1 codes. Bold bins in
the table correspond to the TR,,, portion of the binarization.
When the combined code length would exceed 32 bins, the
binarization is slightly modified [39]. In this case, the length
of the Exp-Golomb prefix is limited to 11 bins (see underlined
entry for m = 0 in Table VI) and the remaining 15 bins of the
32 bit budget are used to represent the suffix part.

For increasing the coding efficiency for completely bypass-
coded levels [33], the values of decAbsLevel do not represent
the absolute level values |g| directly, but are derived as

pOSO7 ‘q‘ = 07
lgl —1, 0 <|q| < pos,
lql, lq| > pos,.

decAbsLevel = a7

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 9

[pass 3 bypass-coded v rem rem rem]
pass 2 regular-coded -é-té- 'é’té‘

______ gt7 ot7 i gt7

gt5 ot5 ot5 i gts

gt3 ot3 gt3 ! gt3
44 re;r-n-eii—r;ilng reguI_a-rEBEr;s Sh——— » bypass-coded
Pt Cpar) e Cpart Cpar){ par} | { par} { par}| [fsin}f i
gtli gtl gtl gtl: i gtl gtli gtli
‘S|gn1 sign sign signi i sign isigni isigni 3
sig sig 8 sig | sig sig i | sig 8 sig sig ‘ 8
t_O-pi-léﬁ cogfj ----- coding order ————————3 hottom-right coef.

Fig. 6. Illustration of coding passes in transform skip residual coding (shaded
elements have zero values).

These values are coded using the same binarization as for the
remainders rem. Note that the parameter pos, basically spec-
ifies the position of the codeword for |¢| = 0 in a reordered
codeword table. It is derived based on the Rice parameter m
and the TCQ state s; according to

2, sk > 2. (18)

G. Transform Skip Residual Coding

In addition to the regular residual coding (RRC) for trans-
form coefficients described above, VVC also includes a ded-
icated entropy coding for quantization indexes in transform
skip mode, which is referred to as transform skip residual
coding (TSRC). It was mainly designed for improving coding
efficiency for screen content and can be enabled on a slice
level. When enabled, the TSRC scheme is used for coding
quantization indexes of transform skip blocks; when not en-
abled, the quantization indexes of transform skip blocks are
coded with the regular residual coding.

In contrast to the regular residual coding, the position of
the last nonzero level is not transmitted and the levels are
coded in forward scan order, i.e., starting from the top-
left coefficient and proceeding to the bottom-right coefficient.
Similar to RRC, the syntax elements for a CG are coded in
multiple passes over the scan positions, and the same limit for
the number of context-coded bins is applied. As long as this
limit is not reached, the levels are coded using three passes,
as shown in Fig. 6. In the first pass, the bins of sig, sign,
gtl, and par are interleaved and context-coded using adaptive
probability models. A local template, as shown in Fig. 5b, is
also applied in TSRC for deriving the context indexes, but
it only includes two neighboring coefficient positions. Since,
in transform skip blocks, successive signs have often similar
values, the sign flags are included into the first pass and are
coded in the regular mode of the coding engine. If the limit
of regular-coded bins is still not reached after the first pass
for a CG, up to four greater-than-x flags (g3, g5, gt7, and
gt9) per coefficient are coded in a second pass. These bins are
also context-coded. Finally, in a third pass, the remainders for
absolute levels (rem) are coded in bypass mode. Note that
the remainders can have different meanings, depending on

whether the bin limit was reached for a scan position during
the second pass (and, thus, no g¢3 bin could be coded). For all
scan positions for which no data were transmitted in the first
pass, the complete absolute values (decAbsLevel) as well as
the associated sign flags are coded in bypass mode in a fourth
pass. The Rice parameter m for both rem and decAbsLevel is
always set equal to 1. For more details on the design of TSRC,
the reader is referred to [8].

IV. BINARY ARITHMETIC CODING

Context-based adaptive binary arithmetic coding (CABAC)
[40] was originally introduced in AVC, as one of two sup-
ported entropy coding methods. Due its superior coding effi-
ciency compared to conventional variable-length coding, it is
the only entropy coding supported in both HEVC and VVC.
But while AVC and HEVC share the same core coding engine,
VVC introduces a new engine for the regular coding mode that
is designed to be more flexible and efficient.

In binary arithmetic coding, the coding engine consists of
two elements: Probability estimation and codeword mapping.
The purpose of probability estimation is to determine the like-
lihood of the next binary symbol having the value 1. This
estimation is based on the history of symbol values coded
using the same context and typically uses an exponential decay
window [41]. Given a sequence of binary symbols z(t), with
t € {1,---, N}, the estimated probability p(t+ 1) of x(t+ 1)
being equal to 1 is given by

p(t+1) =p(1) + Y a-(1-a) " (a(t) - p(1), (19)
k=1

where p(1) is an initial probability estimate and « is a base
determining the rate of adaptation. Alternatively, this can be
expressed in a recursive manner as

pt+1)=pkt) - (1 —a)+z()- . (20)

The engine of AVC and HEVC implements such an exponen-
tial smoothing estimator using a single finite state machine
with 128 states. VVC also uses such an estimator, but with
some key differences:

¢ VVC maintains two estimates for each context, where
each estimate uses it own base «. The probability that
is actually used for coding is the average of the two
estimates. The reason for using multiple estimates is to
improve compression performance;

o VVC defines a different pair of bases for each context to
improve compression performance;

e VVC does not use a state machine but arithmetically de-
rives the probability estimates using the recursive function
described above.

More details on the rationale for using two estimates and per-
context customized bases are provided in Section IV-A.

In VVC, the initial estimate p(1) is derived for each context
using a linear function of the quantization parameter QP,
as is also done in AVC/HEVC. The main difference lies in
the fact that, in VVC, the so derived value represents an
actual probability (linear space), whereas in AVC/HEVC, it
represents a state of the state machine (logarithmic space).

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 10

N(o)

0.0 0.1 0.2 0.3 0.4)

Fig. 7. Histogram for auto-correlation coefficients o.

For codeword mapping, a current interval is split into
two subintervals, each corresponding to one of the possible
values of a binary symbol. The range of each subinterval is
obtained by multiplying the range r of the current interval
with the corresponding probability estimate. In AVC/HEVC,
the multiplication is approximated using a lookup table, which
determines the range r1,pg of the subinterval associated with
the least probable symbol (LPS). In VVC, a direct multipli-
cation is used instead while using the same LPS convention.
Once rppg is determined, the AVC/HEVC and VVC engines
operate in identical manners.

A. Multi-Hypothesis Probability Estimation

Consider a binary source z(t) and let pp be the marginal
probability of a symbol being equal to 1. When using the initial
estimate p(1) = pp, the expected value of the exponential
smoothing estimator is given by

E[p(t)] = po,

which means that the estimator is unbiased. Assuming that the
source is uncorrelated, i.e.,

2y

E[(z(ti) —po)(z(tk) —po)] =0, if t; # ty, (22)
the variance of the prediction error is
E[(p(t) = po)*] = alpo —p3)/(2—). (23)

This implies that the optimal value of « should be 0. However,
this is not observed in practice, where larger values of «
are found to be optimal. The assumption that the source is
uncorrelated is therefore incorrect. Fig. 7 shows the distri-
bution of first-order auto-correlation coefficients o for data
collected from a set of VVC bitstreams, where the correlation
coefficients were estimated on chunks of 4096 symbols for
each context. The range [—0.05,0.45] and distribution are
clearly biased towards positive auto-correlation coefficients.

The combination of multiple estimators using averaging was
proposed in [42]. It is given by

po(t+1) =po(t) - (1 — ap) + z(t) - o,
pi(t+1)=pi(t) - (1 =) +z(t) - ag,
pt+1)=(po(t+1)+p(t+1))/2

For this two-parameter estimator, the relationship between the
auto-correlation coefficient o of the source and the estimation
error was investigated in [43]. In particular, considering an
first-order auto-regressive source model,

E[(x(t:) — po)(a(te) — po)] = o ~"*lo?,

(24)

(25)

0.8 1

aq
0.6 1

0.4 1

0.2 1
Qo

0.0 $ * + * >
0.0 0.1 0.2 0.3 0.4 05 ¢©

Fig. 8. Optimal values for the parameters ag and « as function of the
correlation coefficient p.

with 0 < o < 1, optimal values for oy and «; were derived as
a function of the correlation coefficient p. As shown in Fig. §,
the first parameter g should be equal to 0, and the second
parameter «; should be chosen as a function of p. Using these
optimal parameters, it was further shown in [43] that the two-
parameter estimator outperforms the traditional one-parameter
estimator for a wide range of correlation coeffcients o.

The above assumes that the initial probability estimate is
set equal to pg. In practice, this is not achievable as py may
depend on the actual content of a slice. o should therefore
be set to a value larger than O such as to gradually disregard
the initial estimate. The larger the value of «y, the less impact
has the initial estimate. In VVC, the parameters oy and oy
were selected for each context using a training algorithm that
jointly optimizes these parameters and the initial probability
estimates [44].

B. Implementation Considerations

Arithmetic coding is an inherently serial process: Each
symbol must be processed in sequence. Throughput, measured
in the number of symbols processed per second, is a key
complexity metric to be considered in the design of a coding
engine. Another key complexity metric is the memory require-
ment. A combination of hardware and software considerations
have been used to design the VVC coding engine.

For probability estimation, to simplify implementation and
avoid multiplications, the bases « are limited to negative
integer powers of 2, i.e., & = 277 with 3 € N*. This enables
implementations with bit shifting operations [45],

q(t+1) = q(t) = (a(t) > B) +a(t) - ((2° — 1) > B), (26)

where ¢(t) is an integer representation of p(t) with b bits. The
relationship between p(t) and ¢(¢) is given by

p(t) =q(t)- 270 + 27071 27)

The value of b for each estimator is selected based on coding
efficiency and memory considerations. Memory requirements
are driven by the product of two numbers: The number of
contexts n and the number of bits m required to capture the
state for each context. n depends on context modeling, as
discussed in Section III, while m is equal to the sum by + by of
the number of bits used for each estimator. As VVC uses two
estimators with different adaptation rates, a smaller number
of bits is typically required for the estimator with the faster
adaptation rate. Hence, by = 10 and b; = 14 bits are used for

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 11

wre2 A

v
. Tai
e a\

TCb

Fig. 9. Rotational transform of vectors (rcp, 7cr) to (rc1, rc2) by an angle a.

the faster and slower estimator, respectively, yielding a total of
m = 24 bits per context. This amount is significantly higher
than for HEVC (7 bits) but nevertheless remains reasonable.

Multiplications are thus avoided for probability estimation
but not for subinterval range computation. While the bit
width of the multiplier has typically no impact in software
(latency and throughput are the same for 8-, 16-, and 32-
bit multiplications), it does matter in hardware, where smaller
multipliers are preferred. The size of the multiplier in VVC
is thus limited to 5 by 4 bits, where 5 is the number of bits
representing the probability estimate and 4 the number of bits
representing the range of the current interval. Thus, rppg is
computed as follows,

q(t) = qi(t) +16 - q2(2), (28)
as(t) = (qt) > 10) @ (63 - (q(t) > 14)), (29)
rps(t) = ((gs(0) - (r(t = 1) > 5) > 1) +4, (30)

where @ specifies the bit-wise “exclusive or” operator.

During the development of VVC, throughput of the coding
engine was measured for optimized software implementations
(see experiment 2 in [46]). In that experiment, the throughput
of the VVC engine was determined to be about 7% lower
than that of the AVC/HEVC engine (128.5 million symbols
per second versus 137.8 million symbols per second).

V. JOINT CODING OF CHROMA RESIDUALS

The previous sections focused on the actual quantization and
entropy coding of individual blocks of transform coefficients
in the VVC standard. An efficient joint representation of
multi-component residual block signals, however, was also
addressed during the development of VVC. In addition to the
cross-component linear model (CCLM) prediction of chroma
samples from collocated luma samples [47], VVC provides a
means for the joint coding of chroma residuals (JCCR), which
is described in the following.

Digital images and video pictures are generally composed
of multiple color components (for example, red, green, blue in
RGB color formats and Y, Cb, Cr in the YCbCr color format).
In natural pictures acquired via image sensors, a signal correla-
tion can be observed between these color components, causing
some redundancy to remain in the quantized residuals. JCCR
[48], [49] exploits the correlation between chroma components
(particularly, the Cb and Cr components in YCbCr coding) by
allowing an encoder to transmit, on a transform unit (TU)
basis, only one instead of two quantized residual signals,
along with compact correlation angle and sign information.

TABLE VII
SUPPORTED VALUES OF & AND ASSOCIATED WEIGHTS OF ROTATION
MATRIX APPLIED DURING JCCR PROCESSING IN A VVC DECODER

angular mode m -3 -2 -1 1 2 3
value of o -63.4° —45° -26.6° 26.6° 45° 634°
1 1 1 1
5 1 11 1 5 1 -5 1-1 5-1
weights of Tty ! 2 L2 2 2
-1 11 -1 51 L1 15

In the decoder, the transmitted downmixed joint residual block
signal is then upmixed to the original color components, scaled
according to the angle and sign information.

The following two subsections describe the JCCR mode in
VVC in more detail. For further information on the funda-
mental concept behind the JCCR tool, the inter-component
transformation (ICT), the reader is referred to [50].

A. Forward and Inverse Rotational Transform

The JCCR processing can be regarded as a switchable inter-
component rotational transform applied in addition to conven-
tional intra-component spatial transforms like the DCT-II [50],
with the purpose of achieving increased compaction of residual
energy into a single component on a block basis. As illustrated
in Fig. 9, this rotational transform on two residual blocks 7cp
and r¢; is controlled by an angle «. Conceptually, the forward
and inverse transforms are given by

Go) =t (o) o) () e
rc2 rcr Tcr e

with the forward transform matrix

CcoS (v
—sin«a

sin o
To =B (o) : (32)
In the JCCR modes supported in VVC, the samples of the
second component r(, are enforced to be equal to zero. Hence,
at the decoder side, both color components T’Cb and T’Cr are
reconstructed from the transmitted downmix block signal ¢, .
At the encoder side, the rotation angle « can be selected from
a predefined set of values. Typically, an encoder would select
the angle aypy that yields the lowest rate-distortion cost (when
considering the reconstruction of the Cb and Cr components).
Naturally, an encoder can also disable JCCR on a TU basis
(for example, if it would decrease coding efficiency); then, the
residual blocks for Cb and Cr are coded separately.
To enable efficient hardware and software implementations
with integer arithmetic, the scaling parameter f3,, is chosen as
Ba = max(|cos(a)|, [sin(c)]) . (33)
VVC supports, in total, 6 different rotation angles «, which
can be indicated by an angular mode m. The rotation angles «
and the corresponding weights of 77, ! for all supported modes
m are shown in Table VIL. Note that multiplications by 1/2 can
be realized efficiently using bit shifts to the right. Thus, JCCR

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 12

upmixing, which follows the inverse spatial transforms in the
decoder, is given by

Téb = Tél’ T/Cr = (Csign . 7’61) > 1, for |m| =1, (34
Téb = T/Cl? T/Cr = Csign * Téjl, for |m| =2, (35
Tee =TC1s Tep = (Csign - 7Cy) > 1, for|m| =3, (36)

where cgign € {1, 1} represents the sign of the mode m or,
equivalently, the sign of the rotation angle a.

B. Signaling of JCCR Usage and Rotation Parameters

The general usage of JCCR can be enabled on a picture
level. When enabled, a flag tu_joint_cbcr_residual_flag is
transmitted for every TU for which either or both chroma
coded block flags, CBF¢, and CBF¢,, are equal to 1. If the
tu_joint_cbcr_residual_flag is equal to 0, JCCR is not used
for the TU and the chroma residual blocks are reconstructed
in a conventional manner. Otherwise, if the flag is equal to 1,
the absolute value of the JCCR mode m is derived by

if CBFc, =1 and CBF¢, =0,
if CBFCb =1 and CBFCr = 1,
if CBFCb =0 and CBFCr =1.

L,
Im| =42, 37)
37
The value of cigp, allowing the decoder to distinguish between
m < 0 and m > 0, is conveyed via the picture header syntax
element ph_joint_cbcr_sign_flag. This flag is transmitted on
a picture level, since it was observed that its optimal value
usually varies very little within a video frame. Note that, when
JCCR is enabled for a TU and both chroma CBFs are equal
to 1, no quantization indexes are sent for the second chroma
component. Hence, in all cases, either the Cb residual r¢y, or
the Cr residual r¢; is replaced by the downmix component r¢;.
The support of JCCR does not require any modifications
of the transform coding for residual blocks. But as noted
in Section II-F, a separate look-up table can be specified
for deriving the QP for JCCR modes with |m| = 2. For
|m| =1 and |m| = 3, the QPs for the Cb and Cr components,
respectively, are used.

VI. EXPERIMENTAL RESULTS

In the following, we provide experimental results evaluating
the coding efficiency impact of the quantization and entropy
coding modifications in VVC relative to HEVC. All results
were obtained by running coding experiments according to
the JVET Common Test Conditions (CTC) [51]. In addition to
the test sequences specified in JVET’s CTC, we also generated
results for two other well-known test sets: The UHD-1 test set
of the EBU [52] with 12 sequences in 2160p resolution and
the 5 publicly available 1080p sequences of the SVT [53] test
set. All sequences are given in the YCbCr 4:2:0 format with
8 or 10 bits per sample and frame rates of 24 Hz to 60 Hz.

Since a video coding standard like VVC specifies a combi-
nation of multiple coding tools and design concepts, it is dif-
ficult to assess the benefit of individual aspects. For example,
the design of many tools is affected by the block partitioning,
improvements in intra- and inter-picture prediction influence

the effectiveness of all transform coding tools, and the non-
normative encoding algorithm has a significant impact on all
coding efficiency comparisons. In our coding experiments, we
ran simulations with the VTM-9.1 reference software [28] and
compared the following five versions:

1) VIM-9.1 configured according to CTC (enabling all tools
that contribute to coding efficiency);

2) Version 1 with disabling JCCR;

3) Version 2 with additionally disabling TCQ but enabling
SDH (already supported in HEVC) instead;

4) Version 3 with additionally replacing the arithmetic coder
of VVC with that of AVC/HEVC (the same initialization
tables are used, but with a mapping to initial states);

5) Version 4 with additionally replacing the VVC with the
HEVC coefficient coding (for supporting all block shapes,
the definition of CGs and the scan is not modified).

By comparing bitstreams generated with versions 1 and 5, we
can estimate the coding efficiency benefit of the newly added
features for quantization and entropy coding. The contribution
of individual tools is assessed by comparing two successive
versions in the list above. As measure for coding efficiency
differences, we use the Bjgntegaard delta (BD) rate [54] with
base QP values of 37, 32, 27, and 22, as specified in the JVET
CTC. Note that negative numbers indicate corresponding aver-
age savings in bit rate for the same quality, measured as peak
signal-to-noise ratio (PSNR).

The BD rates are measured for the three test scenarios all
intra (Al), random access (RA), and low delay (LD) specified
in CTC. The average results for the CTC sequence classes
(Al to F) and the two additional test sets (EBU and SVT)
are summarized in Table VIII. For each scenario, the table
lists two BD rate averages: An average over the sequences of
classes Al, A2, B, C, and E as defined in JVET’s CTC and
an average over all tested HD and UHD sequences. It also
reports increases in encoder and decoder run times (measured
via geometric averages, see [51]), which give an indication of
the impact on encoder and decoder complexity, respectively.

The simulation results indicate that the improvements of
quantization and entropy coding in VVC relative to HEVC
yield bit-rate savings of roughly 4% at reasonably small
increases of encoding and decoding times, where somewhat
higher gains (but also higher encoding times) are observed for
intra-only coding. The contributions of the individual tools
lie in a range of about 0.5-2%. The larger improvements for
class F, which comprises sequences with screen content, can be
attributed to the newly included transform skip residual coding
(see also [8]). The decreased decoding times for enabling TCQ
are caused by a slight shift of the quantizer’s operating point
towards lower bit rates. For the results shown in Table VIII,
TCQ was compared to SDH, since the latter is already
included in HEVC. When one compares TCQ to conventional
quantization with URQs, the bit-rate savings increase by about
0.5-0.7%, which represents the gain of SDH. Due to their VQ
properties, both quantization tools show larger gains for higher
video qualities. In contrast to that, JCCR is more effective
for lower bit rates. JCCR also yields larger benefits for non-
4:2:0 color sampling formats, as these include more samples

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020

TABLE VIII
AVERAGE BD RATES [%] FOR THE IMPROVEMENTS OF QUANTIZATION AND ENTROPY CODING IN VVC RELATIVE TO HEVC
all improvements coefficient coding arithmetic coding TCQ (vs SDH) JCCR
Y Cb Cr Y Cb Cr Y Cb Cr Y Cb Cr Y Cb Cr
EBU (2160p) -53 -32 -5.1 -12 -02 -06 -14 -13 -12 -26 00 09 -03 -1.6 -42
SVT (1080p) -45 -24 -45 -0.7 -0.5 -0.38 -1.1 -1.0 -09 -2.0 -2.8 -21 -08 2.0 -038
class Al -49 -24 -03 -12 -05 0.0 -13 -1.1 -1.1 -20 -15 -08 -0.6 038 1.6
class A2 -6.1 -43 -3.0 -12 -09 -0.7 -13 -14 -12 -26 -10 -15 -12 -12 04
class B -39 -27 -34 -1.0 -03 -06 -1.1 -1.1 -1.1 -15 -1.0 -04 -03 -03 -13
all class C -40 -46 -50 -1.5 -07 -0.6 -1.0 -12 -1.1 -1.1 -14 -12 -05 -15 -22
intra class D -39 -43 -45 -14 -05 -0.7 -1.0 -1.1 -09 -12 -1.1 -1.1 -05 -15 -19
class E -42 -31 -3.0 -16 -08 -0.5 -10 -13 -13 -12 -08 -0.6 -04 -04 -06
class F -73 -75 -8.1 -51 -35 -39 -12 -12 -1.1 -05 -12 -1.0 -07 -1.8 -23
avg. CTC -45 -34 -3.1 -13 -0.6 -0.5 -1.1 -12 -1.2 -1.6 -11 -09 -0.6 -0.5 -0.6
avg. HD/UHD -49 -3.0 -39 -1.1 -04 -0.6 -13 -12 -1.1 -23 -1.0 -03 -05 -04 -20
(enc./dec. time) (121% /1 98%) (105% / 102%) (108% / 101%) (105% / 95%) (102% / 100%)
EBU (2160p) -39 -16 -43 -09 -03 -1.7 -1.0 -06 0.2 -1.7 0.1 0.1 -03 -08 -29
SVT (1080p) -46 -10 -48 -0.7 -02 -1.0 -12 -0.8 -04 -22 -17 -15 -0.7 1.7 -19
class Al -39 -18 1.5 -0.8 -09 -0.2 -1.0 -09 -09 -14 -06 -0.8 -0.8 07 1.7
class A2 -40 -35 -1.8 -0.7 -05 -0.7 -1.0 -0.7 -0.6 -16 -05 -0.8 -08 -1.8 02
class B -38 -24 -21 -08 -0.6 -09 -1.0 -09 -05 -1.8 -04 0.1 -03 -0.5 -038
random class C -35 -29 -32 -12 -05 -0.8 -08 -08 -0.7 -1.1 -1.8 -1.0 -0.5 0.1 -06
access class D -34 -34 -27 -13 -02 02 -07 -06 -0.8 -12 -18 -1.5 -04 -09 -0.7
class F -64 -6.1 -6.7 -4.1 -3.1 -34 -09 -10 -09 -06 -12 -13 -1.0 -09 -13
avg. CTC -38 -26 -1.6 -09 -0.6 -0.7 -09 -0.8 -0.6 -1.5 -0.8 -0.2 -0.5 -04 -0.1
avg. HD/UHD -40 -19 -3.1 -08 -04 -1.2 -1.0 -0.7 -0.2 -1.8 -0.5 -0.2 -0.5 -02 -1.5
(enc./dec. time) (110% 7/ 99%) (104% / 101%) (103% / 100%) (101% / 98%) (101% / 100%)
SVT (1080p) -46 -23 -36 -03 -03 -1.1 -12 -06 0.3 -30 -1.8 0.0 -03 03 -29
class B -37 =29 -27 -06 -06 -14 -09 -03 02 -2.1 -0.1 0.6 -0.1 -2.0 -2.0
class C -32 -48 -6.0 -1.0 -0.5 -20 -0.8 -1.0 -0.1 -13 -12 -09 -02 -22 -30
class D -33 -64 -58 -1.1 -04 -1.6 -07 00 06 -14 -21 -18 -0.1 -3.8 -3.1
low class E -26 -16 04 -0.8 02 -0.1 -07 -23 09 -1.1 1.8 1.5 00 -12 -19
delay class F -55 -6.1 -74 -3.6 -25 -28 -09 -1.1 -13 -0.7 -09 -0.8 -03 -1.6 -26
avg. CTC -33 -32 -3.0 -08 -03 -13 -08 -1.0 03 -1.6 00 03 -0.1 -19 -23
avg. HD -42 -2.6 -32 -05 -04 -13 -1.1 -04 0.2 -25 -09 03 -02 -09 -24

(enc./dec. time) (111% /1 97%) (105% / 101%)

(102% 1 99%) (102% 1 98%) (101% / 100%)

TABLE IX
AVERAGE BD RATES [%] FOR ENABLING JCCR IN 4:4:4 SEQUENCES

YCbCr 4:4:4 RGB 4:4:4

Y Cb Cr G B R
all intra -24 -02 -03 -3.0 -0.1 0.4
random access -1.0 -09 -0.1 -33 -0.8 -03
low delay -1.0 -1.0 -0.8 -14 -04 0.0

in the secondary color components. This is demonstrated by
additional results shown in Table IX, which were obtained
by running simulations for eight sequences in YCbCr 4:4:4
and RGB 4:4:4 formats according to the JVET Common Test
Conditions for non-4:2:0 color formats [55].

VII. CONCLUSION

Transform coding of prediction error blocks is one of the
key components in hybrid video coding. This paper described
the fundamental principles and implementation considerations
behind the quantization and entropy coding design in the
recently finalized Versatile Video Coding (VVC) standard. It
introduced the trellis-coded quantization feature of VVC and
highlighted the improvements, relative to the High Efficiency
Video Coding (HEVC) standard, made in both the entropy
coding scheme for quantized transform coefficients and the bi-
nary arithmetic coding engine. In addition, a newly integrated

method for a block-wise joint coding of chroma residuals
in color images and videos was discussed. A comprehensive
performance evaluation, conducted by means of a large set of
video sequences of varying resolution, confirmed the increased
coding efficiency (measured in bit-rate reduction at the same
peak signal-to-noise ratio) achieved by each of the aforemen-
tioned improvements, as well as by the combination of these
coding tools. Beside the technology described in this paper,
VVC includes a variety of other improvements such as the
flexible block partitioning [5], block-adaptive transforms [6],
various improvements of the intra- and inter-picture prediction,
and new adaptive in-loop filters. By combining all these coding
tools, VVC is able to outperform its predecessors, HEVC and
AVC, in compression efficiency by a considerable margin and,
thus, represents the new state-of-the-art in video coding.

REFERENCES

[1] ITU-T and ISO/IEC, “Versatile Video Coding,” ITU-T Rec. H.266 and
ISO/IEC 23090-3, to be published.

B. Bross, J. Chen, J.-R. Ohm, and G. J. Sullivan, “Developments in
international video coding standardization after AVC, with an overview
of Versatile Video Coding (VVC),” Proc. IEEE, to appear.

ITU-T and ISO/IEC, “High efficiency video coding,” ITU-T Rec. H.265
and ISO/IEC 23008-2 (HEVC), version 1, 2013.

ITU-T, “Video codec for audiovisual services at p X 64 kbit/s,” ITU-T
Rec. H.261, version 3, 1993.

Y.-W. Huang, J. An, H. Huang, X. Li, S.-T. Hsiang, K. Zhang, H. Gao,
and J. Ma, “Block partitioning structure in the VVC standard,” IEEE
Trans. Circuits Syst. Video Technol., this issue.

[2]

[3]
[4]
[5]

SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2020 14

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

X. Zhao, S.-H. Kim, Y. Zhao, H. E. Egilmez, M. Koo, S. Liu, J. Lainema,
and M. Karczewicz, “Transform coding in the VVC standard,” IEEE
Trans. Circuits Syst. Video Technol., this issue.

V. K. Goyal, “Theoretical foundations of transform coding,” IEEE Signal
Process. Mag., vol. 18, no. 5, pp. 9-21, Sep. 2001.

T. Nguyen, X. Xu, F. Henry, R.-L. Liao, M. Sarwer, M. Karczewicz,
Y.-H. Chao, J. Xu, S. Liu, and G. J. Sullivan, “Overview of the screen
content support in VVC: Applications, coding tools, and performance,”
IEEE Trans. Circuits Syst. Video Technol., this issue.

ITU-T and ISO/IEC, “Advanced video coding for generic audiovisual
services,” ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), 2003.

G. J. Sullivan, “Efficient scalar quantization of exponential and Lapla-
cian random variables,” IEEE Trans. Inf. Theory, vol. 42, no. 5, pp.
1365-1374, Sep. 1996.

H. Schwarz and T. Wiegand, “Video coding: Part II of fundamentals
of source and video coding,” Found. and Trends in Signal Processing,
vol. 10, no. 1-3, pp. 1-346, Dec. 2016.

T. D. Lookabaugh and R. M. Gray, “High-resolution quantization theory
and the vector quantizer advantage,” IEEE Trans. Inf. Theory, vol. 35,
no. 5, pp. 1020-1033, Sep. 1989.

G. Clare, F. Henry, and J. Jung, “Sign data hiding,” Joint Collaborative
Team on Video Coding (JCT-VC), doc. JICTVC-G271, Nov. 2011.

X. Yu, J. Wang, D. He, G. Martin-Cocher, and S. Campell, “Multiple
signs bits hiding,” Joint Collaborative Team on Video Coding (JCT-VC),
doc. JCTVC-H0481, Feb. 2012.

J. Sole, et. al., “Transform coefficient coding in HEVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1765-1777, Dec. 2012.
H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand, “CE7: Transform
coefficient coding and dependent quantization (tests 7.1.2, 7.2.1),” Joint
Video Experts Team (JVET), doc. JVET-K0071, Jul. 2018.

H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand, “Hybrid video
coding with trellis-coded quantization,” in Proc. of Data Compression
Conference (DCC), Mar. 2019.

M. W. Marcellin and T. R. Fischer, “Trellis coded quantization of
memoryless and Gauss-Markov sources,” IEEE Trans. Commun., vol. 38,
no. 1, pp. 82-93, Jan. 1990.

T. R. Fischer and M. Wang, “Entropy-constrained trellis-coded quan-
tization,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 415-426, Mar.
1992.

R. L. Joshi, V. J. Crump, and T. R. Fischer, “Image subband coding
using arithmetic coded trellis coded quantization,” IEEE Trans. Circuits
Syst. Video Technol., vol. 5, no. 6, pp. 515-523, Dec. 1995.

J. H. Kasner, M. W. Marcellin, and B. R. Hunt, “Universal trellis coded
quantization,” IEEE Trans. Image Process., vol. 8, no. 12, pp. 1677-
1687, Dec. 1999.

H. Schwarz, S. Schmidt, P. Haase, T. Nguyen, D. Marpe, and T. Wie-
gand, “Additional support of dependent quantization with 8 states,” Joint
Video Experts Team (JVET), doc. JVET-Q0243, Jan. 2020.

K. Ramchandran and M. Vetterli, “Rate-distortion optimal fast thresh-
olding with complete JPEG/MPEG decoder compatibility,” IEEE Trans.
Image Process., vol. 3, no. 5, pp. 700-704, Sep. 1994.

M. Karczewicz, Y. Ye, and I. Chong, “Rate distortion optimized quan-
tization,” ITU-T SG16/Q6 (VCEG), doc. VCEG-AH21, Jan. 2008.
E.-H. Yang and X. Yu, “Soft decision quantization for H.264 with main
profile compatibility,” IEEE Trans. Circuits Syst. Video Technol., vol. 19,
no. 1, pp. 122-127, Jan. 2009.

J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,
“Comparison of the Coding Efficiency of Video Coding Standards —
Including High Efficiency Video Coding (HEVC),” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1669-1684, Dec. 2012.

Joint Collaborative Team on Video Coding (JCT-VC), “HEVC test
model software (HM),” software repository is available at https://vcgit.
hhi.fraunhofer.de/jct-ve/HM.

Joint Video Experts Team (JVET), “VVC test model software (VIM),”
software repository is available at https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM.

G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3,
pp. 268-278, Mar. 1973.

C. R. Helmrich, S. Bosse, M. Siekmann, H. Schwarz, D. Marpe, and
T. Wiegand, “Perceptually optimized QP adaptation and associated
distortion measure,” in Proc. of Data Compression Conference (DCC),
Mar. 2019.

J. Pfaft, A. Filippov, S. Liu, X. Zhao, J. Chen, S. de Luxan Hernandez,
V. Rufitskiy, A. K. Ramasubramonian, and G. van der Auwera, “Intra
prediction and mode coding in the VVC standard,” IEEE Trans. Circuits
Syst. Video Technol., this issue.

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand, “Non-CE7: Alter-
native entropy coding for dependent scalar quantization,” Joint Video
Experts Team (JVET), doc. JVET-K0072, Jul. 2018.

H. Schwarz, T. Nguyen, D. Marpe, T. Wiegand, M. Karczewicz,
M. Coban, and J. Dong, “CE7: Transform coefficient coding with
reduced number of regular-coded bins (tests 7.1.3a, 7.1.3b),” Joint Video
Experts Team (JVET), doc. JVET-L0274, Oct. 2018.

F. Bossen, “CE7-related: Modified binarization for reduced bin-to-bit
ratio,” Joint Video Experts Team (JVET), doc. JVET-L0325, Oct. 2018.
T.-D. Chuang, S.-T. Hsiang, Z.-Y. Lin, C.-Y. Chen, Y.-W. Huang, and S.-
M. Lei, “CE7-related: Constraints on context-coded bins for coefficient
coding,” Joint Video Experts Team (JVET), doc. JVET-L0145, Oct.
2018.

T. Nguyen, H. Schwarz, H. Kirchhoffer, D. Marpe, and T. Wiegand,
“Improved context modeling for coding quantized transform coefficients
in video compression,” in Proc. of Picture Coding Symposium (PCS),
Dec. 2010, pp. 378-381.

T. Nguyen, D. Marpe, and T. Wiegand, “Non-CE11: Proposed cleanup
for transform coefficient coding,” Joint Collaborative Team on Video
Coding (JCT-VC), doc. JCTVC-H0228, Feb. 2012.

J. Chen, W.-J. Chien, M. Karczewicz, X. Li, H. Liu, A. Said, L. Zhang,
and X. Zhao, “Further improvements to HMKTA-1.0,” ITU-T SG16/Q6
(VCEG), doc. VCEG-AZO07, Jun. 2015.

D. Flynn, D. Marpe, M. Naccari, T. Nguyen, C. Rosewarne, K. Sharman,
J. Sole, and J. Xu, “Overview of the range extensions for the HEVC
standard: Tools, profiles, and performance,” IEEE Trans. Circuits Syst.
Video Technol., vol. 26, no. 1, pp. 4-19, Jan. 2016.

D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620-636, Jul.
2003.

C. Holt, “Forecasting trends and seasonal by exponentially weighted
moving averages,” O.N.R. Memorandum, Carnegie Inst. Of Technology,
no. 2, 1957.

A. Alshin, E. Alshina, and H. Park, “CE1 (subset B): Multiparameter
probability up-date for CABAC,” Joint Collaborative Team on Video
Coding (JCT-VC), doc. JCTVC-G0764, Nov. 2011.

A. Alshin, E. Alshina, and H. Park, “High Precision Probability Es-
timation for CABAC,” in Proc. of Visual Communications and Image
Processing (VCIP), Nov. 2013.

F. Bossen, J. Dong, and H. Kirchhoffer, “Description of Core Ex-
periment 1 (CE1): CABAC Initialization,” Joint Video Experts Team
(JVET), doc. JVET-N1021, Apr. 2019.

F. Bossen, “CES-related: Implementation considerations for entropy
coding,” Joint Video Experts Team (JVET), doc. JVET-K0273, Jul. 2018.
H. Kirchhoffer and A. Said, “Description of Core Experiment 5 (CES):
Arithmetic Coding Engine,” Joint Video Experts Team (JVET), doc.
JVET-L1025, Jan. 2019.

K. Zhang, J. Chen, L. Zhang, X. Li, and M. Karczewicz, “Enhanced
Cross-Component Linear Model for Chroma Intra-Prediction in Video
Coding,” IEEE Trans. Image Process., vol. 27, no. 8, pp. 3983-3997,
Aug. 2018.

J. Lainema, “CE7-related: Joint coding of chrominance residuals,” Joint
Video Experts Team (JVET), doc. JVET-M0305, Jan. 2019.

C. Helmrich, C. Rudat, T. Nguyen, H. Schwarz, D. Marpe, and T. Wie-
gand, “CE7-related: Joint chroma residual coding with multiple modes,”
Joint Video Experts Team (JVET), doc. JVET-N0282, Mar. 2019.

C. Rudat, C. Helmrich, J. Lainema, T. Nguyen, H. Schwarz, D. Marpe,
and T. Wiegand, “Inter-component transform for color video coding,” in
Proc. of Picture Coding Symposium (PCS), Nov. 2019.

F. Bossen, J. Boyce, K. Siihring, X. Li, and V. Seregin, “JVET common
test conditions and software reference configurations for SDR video,”
Joint Video Experts Team (JVET), doc. JVET-N1010, May 2019.
European Broadcasting Union. UHD-1 test sequences. [Online].
Available: https://tech.ebu.ch/testsequences/uhd- 1

European Broadcasting Union. SVT high definition multi format test
set. [Online]. Available: https://tech.ebu.ch/hdtv/hdtv_test-sequences
G. Bjgntegaard, “Calculation of average PSNR differences between RD
curves,” ITU-T SG16/Q6 (VCEG), doc. VCEG-M33, Apr. 2001.

Y.-H. Chao, Y.-C. Sun, J. Xu, and X. Xu, “JVET common test conditions
and software reference configurations for non-4:2:0 colour formats,”
Joint Video Experts Team (JVET), doc. JVET-R2013, Apr. 2020.

