A SCENE CHANGE AND NOISE AWARE RATE CONTROL METHOD FOR VVENC, AN OPEN VVC ENCODER IMPLEMENTATION

Christian Helmrich, Christian Bartnik, Jens Brandenburg, Valeri George, Tobias Hinz, Christian Lehmann, Ivan Zupancic, **Adam Wieckowski**, Benjamin Bross, and Detlev Marpe

- 1. Introduction, Motivation
- 2. Frame Type Adaptation (FTA) for Key Frames
- 3. GOP-Wise Two-Pass Rate Control (RC) Design
- 4. Noise Level Estimation and Limitation of QPs
- 5. Performance Evaluation
- 6. Summary and Conclusion

1. Introduction, Motivation Rate Control and VVenC

Rate control (RC) methods are inevitable in video coding applications like streaming

- Control of average (= mean) coding bit-rates across full videos, or scenes thereof
- Control of bit rate variance across scenes, or groups of pictures (GOPs), of videos
- VVenC: open* Versatile Video Coding (VVC) compliant video encoder [ICMEW, 2021]
 - Featuring a recently developed two-pass RC method [Helmrich et al., VCIP 2021]
 - Uses *R-QP* (instead of *R*- λ) model with two encoding passes \rightarrow sequence-wise RC
- VVenC's two-pass RC initially designed for file based operation, using short I-periods
- * Code: https://github.com/fraunhoferhhi/vvenc

1. Introduction, Motivation Issues with Existing Methods

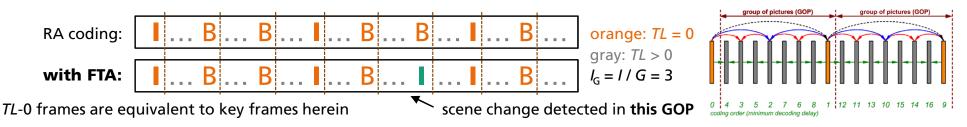
Issue 1: both short and long input independent I-periods have specific disadvantages

- Frequent I-frames consume a lot of the coding bits available in small bit budgets
- Long I-periods lead to diminishing efficiency returns, may lead to visual artifacts
- Issue 2: Sequence-wise RC operation doesn't work with 'on-the-fly' stream encoding
 Live or pipe based encoding: every GOP is passed to encoder, one after the other
- Issue 3: strongly varying picture statistics between short scenes often destabilize RCs
 Most prominent case: varying sensor noise or film grain levels (low light, credits)

1. Introduction, Motivation Contributions of This Paper

- **Solution 1:** input adaptive key frame type selection → frame type adaptation (FTA)
 - For reliable use of **long I-periods** without risk of visual artifacts or efficiency loss
 - Reaches the advantages of both short and long I-periods on a GOP-by-GOP basis
 - Solution 2: extension of sequence-wise RC design to allow for GOP-wise operation
 - GOP-wise two-pass RC with **sliding window** → usable with 'on-the-fly' encoding
 - Solution 3: 'minimum statistics' based noise level estimation with block QP limiting
 - Prevents excessive rate consumptions in 2^{nd} encoding pass \rightarrow stabilization of RC.

- 1. Introduction, Motivation
- 2. Frame Type Adaptation (FTA) for Key Frames
- 3. GOP-Wise Two-Pass Rate Control (RC) Design
- 4. Noise Level Estimation and Limitation of QPs
- 5. Performance Evaluation
- 6. Summary and Conclusion

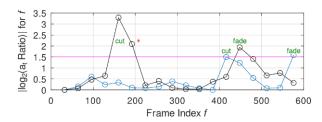

2. Frame Type Adaptation (FTA) Background, Overview

Since H.264/AVC scalable coding, use of usually dyadic hierarchical coding structure

- Each coded picture is assigned a **temporal level** TL, coding order \neq display order
- All pictures belong to one specific group of pictures (GOP), e.g. GOP size G = 32

Types of TL = 0 frames: Intra-only (I) for random-access point, Inter (B, P) otherwise

- **FTA**: use long I-periods with few fixed I-frames, add I-frame near scene changes
- Reasoning: TL-0 B or P frames near scene changes use many bits, type I is better


2. Frame Type Adaptation (FTA) Implementation Details

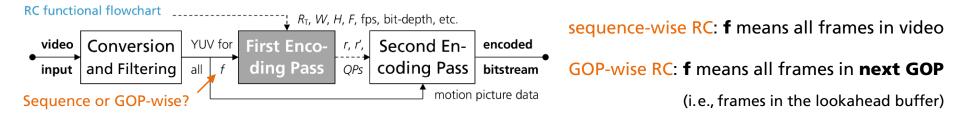
- Assumption: I-period is integer multiple of GOP size G, first adapted frame at $f_P > G$
 - No FTA is needed when first *TL*-0 frame after a scene change is a regular | frame
 - **Detection process:** determine spatio-temporal visual activity a_t at each TL-0 frame f_P
 - a_t defined as a_k in XPSNR metric [Helmrich *et al.*, JITU '20], with two differences:
 - Picture-wise, not block-wise a_t, last picture is last TL-0, not last displayed picture
 - Switch *TL*-0 frame to type I if* $a_t(f_P) > T \cdot a_t(f_M)$ or $T \cdot a_t(f_P) < a_t(f_M)$, with $f_M = f_P G$

I scene change

Top: – MarketPlace, bottom: – RitualDance, right: – threshold $T = 2^{1.5}$

*: detections in successive key frames forbidden

- 1. Introduction, Motivation
- 2. Frame Type Adaptation (FTA) for Key Frames
- 3. GOP-Wise Two-Pass Rate Control (RC) Design
- 4. Noise Level Estimation and Limitation of QPs
- 5. Performance Evaluation
- 6. Summary and Conclusion


3. GOP-wise Two-pass Rate Control Background, Overview

First RC pass: fast R-D optimized encoding with fixed quantization parameters (QPs)

- Like non-RC coding; overall base QP estimated from video size, target rate R_{target}
- **G**oal: collect frame-wise QP, λ , rate across entire video \rightarrow short video look-ahead

Second RC pass: final encoding with adapted (based on first-pass statistics) CTU QPs

- QPs adapted for visual quality & to match R_{target} across video \rightarrow analysis window
- Here, look-ahead size set to 1 G, analysis window A to min(8 G, I-period/G) + 1 G

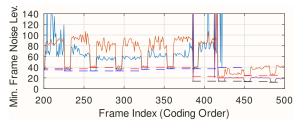
3. GOP-wise Two-pass Rate Control Implementation Details

- First RC pass: read and encode a new GOP, move analysis window A forward in time
 - With statistics of previously coded I-period, derive 2nd-pass QPs for the new GOP
 - Second RC pass: estimate base QP (for e.g. filtering) from video size, I-period, R_{target}
 - Final bit allocation based on instantaneous 1st-pass rates $\rightarrow R_{target}$ in all I-periods*
 - Additional 2nd-pass QP constraints for improved stability across scenes (Sec. III.B)
 - Forbid mean frame QPs from changing too abruptly over time and between *TL*s.

intermediate QP:
$$QP'_{\text{base}} = \text{round}(40 - 1.5D_1\sqrt{R_{\text{target}}/500000} - 0.5\log_2 I_G})$$

 $2\text{nd-pass base QP: } QP''_{\text{base}} = \text{round}(QP'_{\text{base}} + c_{\text{high}} \cdot \max(0; 24 - QP'_{\text{base}}))$
* sequence-wise RC: only on average across video
 $- \text{effect of QP constraints:}$
 $D_1 \text{ and } c_{\text{high}}$
 $depend \text{ on video size}$
 $- \text{effect of QP constraints:}$

- 1. Introduction, Motivation
- 2. Frame Type Adaptation (FTA) for Key Frames
- 3. GOP-Wise Two-Pass Rate Control (RC) Design
- 4. Noise Level Estimation and Limitation of QPs
- 5. Performance Evaluation
- 6. Summary and Conclusion

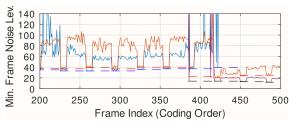


4. Noise Level Estimator, QP Limiter Background, Overview

- **Theory:** fine quantization of picture noise visually irrelevant, costly, destabilizes RC
 - Some actually prefer denoising effect of encoder, or utilize film grain synthesis

 - Approach: find picture noise level in 1st pass, apply proportional QP limit in 2nd pass
 - Simple noise level estimator: minimum statistics based estimator [EuroSp 1993]
 - Convert noise level into step size, find nearest corresp. QP, take it as lower limit

Noise level estimates in the MarketPlace video: Minima across all frame minima in every GOP, separately for – low, – mid, – high luminance


4. Noise Level Estimator, QP Limiter Implementation Details

- First RC pass: estimate noise level per CTU block k in 8 different luma intensity regions
 - Input: min. visual activity (see a_k) and, since VVenC 1.7, min. MCTPF motion error*
 - Second RC pass: clip QP before encoding a CTU, reset estimator after encoding a GOP

 - When bits are saved due to the limiting, RC can try to spend them elsewhere later
 - Example: bits saved in noisy scene spent in following low-noise fast moving scene.

Noise level estimates in the MarketPlace video: Minima across all frame minima in every GOP, separately for – low, – mid, – high luminance

*: use of MCTPF motion error not described in paper

- 1. Introduction, Motivation
- 2. Frame Type Adaptation (FTA) for Key Frames
- 3. GOP-Wise Two-Pass Rate Control (RC) Design
- 4. Noise Level Estimation and Limitation of QPs
- 5. Performance Evaluation
- 6. Summary and Conclusion

5. Performance Evaluation

RA - Left: fixed-QP (no RC), Right: 2-pass RC

- VVenC 1.6, Bjøntegaard delta (BD)-rates, JVET's common test conditions [JVET-Y2010]*
- **Test 1:** evaluation of FTA when going from I-period **1 sec** to **4 sec** \rightarrow loss turned to gain
- Test 2: evaluation of GOP-wise RC, comparison to VTM 14 + RC [JVET-Y0105] → good ☺

R_{target} and BD-rate references: resp. VVenC or VTM fixed-QP CTC results (QPs 22–37)

Resoluti- on Class	Test 1	Without FTA 1→ 4	With FTA 4→4	Overall 1→ FTA 4	Test 2	VTM14.0 no QPA 1	VVenC1.6 III.B off 4	VVenC1.6 III.B on 4	Sequence wise RC 4	numbers in table
UHD A½		-2.07%	0.00%	-2.07%		10.04%	2.40%	0.65%	-0.46%	headers:
HD B	*	-1.88%	-1.93%	-3.95%		5.45%	4.60%	1.31%	0.63%	I-periods
SD C		-4.46%	0.06%	-4.40%		4.02%	5.47%	2.10%	0.91%	
Overall		-2.64%	-0.63%	-3.32%		6.91%	3.95%	1.26%	0.27%	
MarketPl.		8.24%	-9.27 %	-1.74%	*	: YUV avera	ges; length (of all class-A	sequences	set to 10 sec

- 1. Introduction, Motivation
- 2. Frame Type Adaptation (FTA) for Key Frames
- 3. GOP-Wise Two-Pass Rate Control (RC) Design
- 4. Noise Level Estimation and Limitation of QPs
- 5. Performance Evaluation
- 6. Summary and Conclusion

6. Summary and Conclusion Rate Control (RC) Encoding in VVenC

- This paper presented three recent enhancements to VVenC's rate control algorithm:
- Frame type adaptation improves encoding with long I-periods around scene changes
- Changes to RC enable GOP-wise 'on-the-fly' encoding of video streams, not only files
- **QP limiter** based on noise level estimation improves both RC stability & bit allocation
- Excellent performance of FTA and GOP-wise RC confirmed using BD-rate experiments
 - Up to 9% BD-rate gain due to FTA on JVET's CTC test set (1.9% overall on class B)
 - VVenC + GOP-wise RC outperforms JVET's VTM + RC [JVET-Y0105] by about 5 8%

Future work: more RC stability and visual quality improvements via QP optimization.

Thank you for your attention! The VVenC Team

https://github.com/fraunhoferhhi/vvenc

Annex – References

- [ICMEW 2021] A. Wieckowski, J. Brandenburg, T. Hinz, C. Bartnik, V. George, G. Hege, C. Helmrich, A. Henkel, C. Lehmann, C. Stoffers, I. Zupancic, B. Bross, and D. Marpe, «VVenC: An Open and Optimized VVC Encoder Implementation», in Proc. IEEE Int. Conf. Multim. & Expo Workshops (ICMEW), July 2021. <u>https://ieeexplore.ieee.org/document/9455944/</u>
- [VCIP 2021] C. R. Helmrich, I. Zupancic, J. Brandenburg, V. George, A. Wieckowski, and B. Bross, «Visually Optimized Two-Pass Rate Control for Video Coding Using the Low-Complexity XPSNR Model», in Proc. IEEE Int. Conf. on Visual Communications & Image Processing (VCIP), Munich, Dec. 2021. https://ieeexplore.ieee.org/document/9675364/
- [JITU 2020] C. R. Helmrich, S. Bosse, H. Schwarz, D. Marpe, and T. Wiegand, «A Study of the Extended Perceptually Weighted Peak Signal-to-Noise Ratio (XPSNR) for Video Compression with Different Resolutions and Bit Depths», ITU Journal: ICT Discoveries (Special Issue), vol. 3, no. 1, URL, May 2020. <u>http://handle.itu.int/11.1002/pub/8153d78b-en</u>
- [EuroSp 1993] R. Martin, «An Efficient Algorithm to Estimate the Instantaneous SNR of Speech Signals», in Proc. IEEE EuroSpeech, Berlin, Sep. 1993. <u>https://www.isca-speech.org/archive_v0/eurospeech_1993/e93_1093.html</u>
- [JVET-Y2010] F. Bossen *et al.*, «VTM and HM common test conditions and software reference configurations for SDR
 4:2:0 10-bit video», ITU doc. *JVET-Y2010*, Feb. 2022. <u>www.jvet-experts.org</u> -> All meetings -> Number 25
- [JVET-Y0105] G. Ren, J. Jia, J. Wang, and Z. Chen, «AHG10: An improved rate control scheme», ITU doc. JVET-Y0105, Jan. 2022; see also: ITU doc. JVET-T0062, Oct. 2020. www.jvet-experts.org -> All meetings -> Number 25

