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ABSTRACT 

 

The objective PSNR metric is known to correlate quite poorly 

with subjective assessments of video coding quality.  Thus, a 

number of alternative VQA measures such as (MS-)SSIM and 

VMAF have been proposed.  These, however, are often algo-

rithmically complex and difficult to use for visually motivated 

encoder optimization tasks, especially subjectively optimized 

bit allocation. In this paper we show that, by way of low-com-

plexity enhancements of our previous work on a perceptually 

weighted PSNR (WPSNR) metric, addressing shortcomings 

with video and ultra high-definition content, the prediction of 

human judgments of video coding quality by the WPSNR can 

be improved. In fact, the resulting XPSNR seems to match the 

performance of the aforementioned state-of-the-art methods. 

 

Index Terms— PSNR, SSIM, UHD, video coding, VQA 

 

1.  INTRODUCTION 

 

With the introduction of high-quality video streaming services 

about ten years ago, the demand for real-time automated video 

quality assessment (VQA) for so-called quality of experience 

(QoE) purposes [1] increased.  The basic goal of VQA here is 

to estimate the subjective visual quality of a coded / decoded 

video presentation, usually in relation to the uncoded original 

input video sequence (full-reference VQA) frame-by-frame, 

scene-by-scene, or file-by-file. Given the well-known inaccu-

racy of the peak signal-to-noise ratio (PSNR) in predicting an 

average subjective judgment of visual coding quality [2]–[4] 

for a given codec c and image or video stimulus s, numerous 

better performing measures have been developed over the last 

two decades.  The most commonly applied are the structural 

similarity measure (SSIM) [2] and its multi-scale extension, 

the MS-SSIM [3] as well as a recently proposed video multi-

method assessment fusion (VMAF) design combining several 

other metrics by means of machine learning [4].  The VMAF 

approach was found to be especially useful for the assessment 

of video coding quality [5], but determining objective VMAF 

scores is, algorithmically, quite complex.  More importantly, 

however, the VMAF algorithm is not differentiable [6].  Thus, 

it cannot be adopted as a perceptual control model for visually 

optimized bit-allocation strategies during image or video en-

coding, as it is possible with PSNR or SSIM-based measures. 

    In JVET-H0047 [7], we proposed a block-wise perceptually 

weighted distortion measure as an improvement of the PSNR 

metric, called WPSNR, which was enhanced in JVET-K0206 

[8] and finalized in JVET-M0091 [9].  Recently, this WPSNR 

measure was found to correlate with subjective mean opinion 

score (MOS) data at least as well as (MS-)SSIM across a set 

of MOS annotated still image databases [10], as seen in Table 

1.  On video data, however, the correlation with MOS scores, 

e. g., those provided in [5] or the results of JVET’s recent Call 

for Proposals (CfP) on video compression solutions [11], was 

found to be worse than that of (MS-)SSIM or VMAF.  This is 

especially true for ultra high-definition (UHD) content with a 

resolution of more than, say, 2048×1280 luminance (or luma) 

samples and indicates a necessity for improvement. 

    In the following four sections, a summary of the block-wise 

WPSNR measure (Sec. 2) and descriptions of low-complexity 

extensions for motion picture processing (Sec. 3), improved 

performance in case of temporally varying video quality (Sec. 

4), and the handling of UHD image and video material (Sec. 

5), are provided to address the mentioned shortcomings.  Sec. 

6 presents the outcome of empirical evaluations of the exten-

ded perceptually weighted PSNR (XPSNR) on various MOS 

annotated video databases.  Lastly, Sec. 7 concludes the paper. 

 

 

2.  REVIEW OF BLOCK-BASED WPSNR MEASURE 

 

The WPSNRc,s value for a codec c and frame of a video se-

quence (or still image stimulus) s is given, similarly to PSNR, 

by WPSNR�,� = 10log�� � � ∙ � ∙ �2�� − 1��∑ ��� ∙ ∑ � �!", #$ −  !", #$��!%,&$'�( )� *, 
where W and H are the luma width and height, respectively, of 

s, BD is the coding bit-depth per pixel, and sensitivity weight 

�� = +,-./,� 01 		with				,-./ = 2�� ∙ 789:�∙��;�<∙= ,				> = 0.5 

is a scale factor associated with each N×N sized block Bk and 

derived from the block’s spatial activity ak [10], [12].  We set 

A = round�128 ∙ 7 <∙=89:�∙��;�* 



Correlation PSNR SSIM MS-SSIM WPSNR 

SROCC 0.8861 0.9509 0.9569 0.9604 

PLCC 0.8730 0.9231 0.9103 0.9408 

Table 1. Mean correlation between subjective MOS and objective 

values across JPEG and JPEG 2000 compressed still images of 

four databases. SROCC: Spearman rank-order, PLCC: Pearson 

linear correlation coefficients.  Data taken from [10]. 

 

since, for the commonly utilized HD and UHD resolutions of 

1920×1080 and 3840×2160 luma samples, respectively, this 

nicely aligns with the largest block sizes used in modern video 

codecs.  apic
 was specified such that, on average, wk ≈ 1 over 

a large set of images.  If wk = 1 for all k, the PSNR is obtained. 

In other words, the WPSNR represents a generalization of the 

PSNR by way of a block-wise weighting (via wk) of the mean 

squared error (MSE, also called distortion) between the input 

signal s and distorted (here, coded by c) output signal sc. 

    For video sequences, the frame-wise logarithmic WPSNRc,s 

values can be averaged arithmetically to obtain a single result: 

WPSNR� = 1H ∙I WPSNR�,�JK
LM� ,	

where F indicates the total number of frames in the sequence. 

 

 

3.  EXTENSION OF WPSNR FOR MOVING PICTURES 

 

The spatially adaptive WPSNR method of [10], [12] and Sec. 

2 can easily be extended to motion picture signals si, where i 

represents the frame index in the video, by adding a temporal 

adaptation into the calculation of the visual activity ak.  Given 

that, in our prior work, ak was determined from a filtered si as 

,� = maxQ,R.S� , T 14A� I VℎXJ!", #$V!%,&$'�(
Y�Z, 

where x and y are the horizontal and vertical indices of input 

si and hs is a high-pass signal obtained using the convolution ℎX =  ∗ �X with spatial filter Hs, the temporal adaptation can 

be incorporated by adding to hs a temporal high-pass signal ht: 

,\� = maxQ,R.S� , T 14A� I VℎXJ!", #$V + ^Vℎ_J!", #$V!%,&$'�(
Y�Z 

    To obtain ℎ_ =  ∗ �_, two simple temporal filters Ht were 

found to work well. The first one, a first-order FIR applied for 

frame rates of 30 Hz or less (e. g., 24, 25, and 30 frames per 

second), is given by ℎ_J!", #$ =  L!", #$ −  L`�!", #$ whereas 

the second one, a second-order FIR employed for frame rates 

higher than 30 Hz (e. g., 48, 50, and 60 frames per second), is 

defined as ℎ_J!", #$ =  L!", #$ − 2 L`�!", #$ +  L`�!", #$.  Put 

differently, one or two past frame inputs are used to determine 

an estimate of the temporal activity in each block Bk of every 

frame s over time.  The dependency of the filter order of Ht on 

the frame rate is founded on psychovisual considerations: the 

limited temporal (high-pass-like) integration of visual stimuli 

in human perception [13] implies that a shorter filter must be 

used for relatively low frame rates than for higher ones.  Note 

that taking the absolute value of the outputs of our first-order 

high-pass is equivalent to the ATI filter utilized in [14]. 

    The relative weighting parameter ^ is an empirically deter-

mined constant for which we chose ^ = 2.  To compensate for 

the increased intensity of ak after introducing | ht |, we readjust 

wk: �a� = �,\-./,\� *1 	with				,\-./ = 2���b�� ∙ 789:�∙��;�<∙= ,				> = 0.5. 
    It is worth noting that the temporal activity component of ,\� introduced in this work is a relatively crude, but very low-

complexity, approximation of a block-wise motion estimation 

process, as it is applied in all modern video codecs.  Naturally, 

more sophisticated, but computationally more complex, tem-

poral activity measures that account for block-internal motion 

between frames i, i –1 and if applicable, i – 2 before subjecting 

si to the temporal filter ht in i may be devised [15], [16].  Such 

higher-complexity designs, which may apply neural networks 

[17] or estimations of multi-scale statistical models [18], are 

not considered here. 

 

4.  TEMPORALLY VARYING VIDEO QUALITY 

 

In Sec. 2 it was noted that, for video sequences, the traditional 

approach is to average the individual frame (W)PSNR values 

to obtain a single measurement value for an entire sequence. 

We observed that, for compressed video material that strongly 

varies in perceptual quality over time, this form of averaging 

frame-wise model outputs may not correlate well with MOS 

values given by human, especially non-expert, observers.  The 

averaging of the logarithmic (W)PSNR values appears to be 

particularly suboptimal on some video content of high overall 

visual quality in which, however, brief temporal regions exhi-

bit relatively low quality.  With the growing popularity of rate 

adaptive video streaming, such scenarios actually occur quite 

often.  We discovered experimentally that non-expert viewers, 

under such circumstances, assign relatively low scores during 

video quality assessment tasks even if the majority of frames 

of the compressed video are of excellent quality to their eyes. 

The consequence is that the log-domain averaged WPSNRs 

tend to overestimate the subjective quality in such cases. 

    A simple solution to this problem is to average the frame-

wise w-weighted distortions cL!", #$ = � �,L!", #$ −  L!", #$�2 

derived during the WPSNRc,s calculations (i. e., the denomi-

nator in 1st equation in Sec. 2) instead of the WPSNRc,s values 

themselves: 

WPSNR�d = 10log�� � H ∙ � ∙ � ∙ �2�� − 1��∑ �∑ ��� ∙ ∑ cL!", #$!%,&$'�( )� )KLM� *. 



This root-mean-square (RMS) solution, however, sometimes 

results in an underestimation of the visual quality, so we apply 

WPSNR�dd = 20log�� e
f H ∙ √� ∙ � ∙ �2�� − 1�∑ 7∑ ��� ∙ ∑ cL!", #$!%,&$'�( )�KLM� h

i, 
i. e., a square-mean-root (SMR) approach [19] yielding output 

values lying about midway between the log-domain WPSNRc 

and the linear-domain WPSNR'c results, as shown in Figure 1. 

 

 

5.  VERY HIGH-RESOLUTION IMAGES AND VIDEOS 

 

It was noted that, particularly for UHD images and video se-

quences, the initial WPSNR assessments of [7]–[10] and [12] 

still correlate quite poorly with subjective judgments of visual 

coding quality.  In fact, on such content the WPSNR performs 

only marginally better than the traditional PSNR metric.  One 

possible explanation is that UHD videos are typically viewed 

on similar screen sizes as lower-resolution content with, e. g., 

only 1920×1080 luma samples.  As a result, the samples of a 

UHD image are displayed smaller than those of an (upscaled) 

HD picture, a fact which should be taken into account during 

the visual activity calculation in the WPSNR algorithm. 

    Here, a logical countermeasure is to extend the support of 

the spatial high-pass filter Hs such that it extends across more 

neighboring samples of s[x, y].  Given that in [8], [10] we used 

�X = j−1 −2 −1−2 12 −2−1 −2 −1k 
or a scaled version thereof (multiplied by ¼ in [10]), a simple 

approach would be to upsample Hs by a factor of two, i. e., to 

increase its size from 3×3 to 6×6 or even 7×7.  This, however, 

would cause a considerable increase of the algorithmic com-

plexity of the spatio-temporal visual activity calculation. 

    For this reason, we employ an alternative solution in which 

we acquire the visual activity ,\� from a downsampled version 

of the input frame sequence si–2, si–1, si when the input picture 

or video is larger than 2048×1280 luma samples.  Hence, only 

a single value of ℎXJ!", #$ and, in case of videos, a single value 

of ℎ_J!", #$ is calculated for each 2×2 quadruple of samples of 

si.  This approach is not new and has been applied in a number 

of VQA methods, most prominently the MS-SSIM [3]. 

    It is worth noting in this regard that the downsampling and 

high-pass operations can be unified into one processing step 

by designing the high-pass filters appropriately, thus resulting 

in minimal computational overhead.  We utilize the following: 

ℎlXJ!", #$ =  L!", #$ ∗
mnn
nno
0 −1 −1−1 −2 −3−1 −3 12

−1 −1 0−3 −2 −112 −3 −1−1 −3 12−1 −2 −30 −1 −1
12 −3 −1−3 −2 −1−1 −1 0 qrr

rrs	, 
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   –– mean WPSNR�dd 
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Figure 1.  Results of three temporal (W)PSNR averaging methods 

on coded video with visual quality drop (MarketPlace, 10s [11]). 

 
    ℎl_J!", #$ =  ̌L!", #$ −  ̌L`�!", #$  or 			 ̌L!", #$ − 2 ̌L`�!", #$ +  ̌L`�!", #$, 
where the 	 ̌denotes the downsampling process and  ̌L!", #$ = L!", #$ +  L!" + 1, #$ +  L!", # + 1$ +  L!" + 1, # + 1$. 
    Using  ̌L!", #$, the sample-wise activity values required for 

the computation of ,\�  (or ,� for still-image input) need to be 

determined only for the even values of x and y, i. e., for every 

fourth value of the input sample set s.  This particular benefit 

of the downsampled high-pass operation is illustrated in Fig-

ure 2 for the exemplary case of a WPSNR analysis block Bk 

of size 12×12 samples (i. e., N = 12).  Other than restricting x 

and y to be incremented only in steps of two in the downsamp-

ling case, the calculation of ,\�  (or ,�), as described in Sec. 3 

(or 2), remains unchanged, including the division by 4N 

2. 

    It must be emphasized that the downsampling of si is only 

applied temporarily during the calculation of the block-wise 

activity value ,\�  (or ,� for single images).  The distortion sum 

accumulated by the WPSNR metric, i. e., ∑ cL!", #$!%,&$'�(  in 

the above equations, is still determined at the input resolution 

without downsampling, even for UHD input, as in the PSNR. 

 

 

6.  EXPERIMENTAL EVALUATION 

 

The WPSNR version extended by the techniques described in 

the previous sections, which we call XPSNR for the sake of 

differentiability, was evaluated on a selection of MOS annota-

ted databases of compressed and decoded videos of different 

resolutions and bit-depths, up to UHD and 10 bit per sample. 

Specifically, two types of mean MOS-vs-XPSNR correlation 

coefficients were determined to quantify the overall accuracy 

with which the objective XPSNR values predict the subjective 

MOS assessments for a given set of videos.  Pearson’s linear 

correlation coefficient (PLCC) indicates the degree of linear-

model fit while Spearman’s rank-order correlation coefficient 

(SROCC) shows how well the relationship between MOS and 

XPSNR pairs of values can be described using a monotonic 

function.  The correlation statistics for the widely used PSNR, 

SSIM, MS-SSIM, and VMAF metrics as well as the original 

block-based WPSNR method [10] serve as comparative data. 
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Figure 2.  Sample-wise high-pass filtering by Hs of input signal s 

(left) without (center) and with (right) spatial downsampling of s 

during the filtering.  When downsampling, 4 inputs yield 1 output. 

 

6.1.  Selection of MOS Annotated Databases 

 

For easy comparison, we adopt the annotated video databases 

already used in [20] for this evaluation, namely, subsets of the 

Yonsei [21], Live [22], and IVP [23] sets, as well as the ECVQ 

and EVVQ databases introduced in [24].  To add more videos 

compressed with state-of-the-art codecs, we further included 

the SJTU 4K Video Subjective Quality dataset of [25] and the 

sequences coded with HEVC [26] and Fraunhofer HHI’s pro-

posal [27], created for evaluation in JVET’s recent CfP [11], 

for both of which sequence-wise MOS data are available.  In 

addition, B-Com kindly agreed to calculate VQA statistics for 

the HM [28] and VTM [29] coded sequences of the HEVC-

vs-VVC subjective comparison published in [5] for this study. 

 

6.2.  Resulting Metric-vs-MOS Correlations 

 

Tables 2 and 3 contain the database-wise (in rows) PLCC and 

SROCC results, respectively, for the comparison between the 

corresponding MOS annotations and the individual objective 

VQA metrics (in columns) assessed in this study.  The closer 

the value for a VQA measure is to one, the better the measure 

succeeds in predicting subjective video quality.  Note that the 

Live [22] and IVP [23] datasets contain not only visual coding 

distortion subsets but also, e. g., error concealment distortion 

created when using such techniques in case of packet loss and 

other types of transmission errors. As the tested VQA methods 

are not explicitly designed for such scenarios, the correlation 

values here are somewhat lower than on the other datasets. 

    Overall, it can be observed that the original WPSNR design 

[10] achieves significantly higher correlation with the MOS 

data than the PSNR model and that, except for the low-video-

resolution ECVQ set, the extensions resulting in the XPSNR 

further increase this advantage.  Moreover, the performance 

of the XPSNR, averaging at a satisfactory 0.82 for PLCC and 

0.83 for SROCC, matches that of the other VQA methods. 

 

7.  DISCUSSION AND CONCLUSION 

 

In this paper we introduced extensions to our previously pro-

posed VQA algorithm, called WPSNR, to address identified 

shortcomings when used with motion picture and UHD image 

or video input.  By incorporating a low-complexity temporal 

visual activity model (Sec. 3), modified frame averaging (Sec. 

4), and spatial downsampling in the visual activity calculation 

DB PSNR SSIM MS-SSIM VMAF WPSNR XPSNR 

[21] 0.822 0.789 0.765 0.942 0.916 0.919 

[22] 0.539 0.626 0.675 0.729 0.637 0.702 

[23] 0.632 0.570 0.546 0.591 0.686 0.707 

ECV 0.733 0.879 0.853 0.830 0.848 0.784 

EVV 0.727 0.881 0.874 0.937 0.880 0.897 

SJTU 0.721 0.765 0.810 0.827 0.783 0.829 

CfP 0.717 0.794 0.743 0.862 0.692 0.863 

[5] 0.722 0.826 0.799 0.855 0.759 0.818 

mean 0.702 0.766 0.758 0.822 0.775 0.815 

Table 2. Evaluation results for Pearson linear correlation.  High-

er values mean higher correlation with associated MOS values. 

 

DB PSNR SSIM MS-SSIM VMAF WPSNR XPSNR 

[21] 0.860 0.949 0.925 0.915 0.939 0.935 

[22] 0.523 0.694 0.732 0.752 0.605 0.675 

[23] 0.647 0.635 0.574 0.580 0.690 0.709 

ECV 0.762 0.916 0.881 0.736 0.859 0.816 

EVV 0.764 0.908 0.911 0.874 0.905 0.926 

SJTU 0.739 0.807 0.799 0.791 0.814 0.877 

CfP 0.739 0.810 0.881 0.867 0.724 0.866 

[5] 0.703 0.848 0.832 0.850 0.730 0.812 

mean 0.717 0.821 0.817 0.796 0.783 0.827 

Table 3. Evaluation results for Spearman rank-order correlation. 

 

(Sec. 5), the MOS prediction performance of the resulting ex-

tended WPSNR (XPSNR), measured on numerous annotated 

video databases (Sec. 6), was shown to improve to the point 

where it matches that of other commonly used VQA methods. 

Given that, unlike VMAF or some other designs, the XPSNR 

is equally usable for perceptual image/video encoder control 

purposes (e. g., bit-allocation) than the WPSNR approach [7], 

[8], [12] – only the block-wise sensitivity weight ��  needs to 

be changed to �a�  – while maintaining the benefit of very low 

computational complexity, we consider the XPSNR a valuable 

addition to the list of coding quality specific VQA solutions. 

Note that, in this study, only the luma components were con-

sidered. Therefore, we will focus on incorporating the chroma 

channels into the visual activity model in our future work. 
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