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Abstract—Two-pass rate control (RC) schemes have proven 

useful for generating low-bitrate video-on-demand or streaming 

catalogs.  Visually optimized encoding particularly using latest-

generation coding standards like Versatile Video Coding (VVC), 

however, is still a subject of intensive study.  This paper describes 

the two-pass RC method integrated into version 1 of VVenC, an 

open VVC encoding software.  The RC design is based on a novel 

two-step rate-quantization parameter (R-QP) model to derive the 

second-pass coding parameters, and it uses the low-complexity 

XPSNR visual distortion measure to provide numerically as well 

as visually stable, perceptually R-D optimized encoding results. 

Random-access evaluation experiments confirm the improved 

objective as well as subjective performance of our RC solution. 
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I. INTRODUCTION 

Compressed high-resolution video content is increasingly 

distributed to consumers through video-on-demand (VoD) IP 

based streaming platforms operated by relatively new Internet 

technology companies, and video archive web-sites hosted by 

traditional TV broadcasters.  Coded video catalogs are usually 

generated off-line according to certain average and maximum 

instantaneous bit-rate constraints, and it was found that two-

pass rate control (RC) schemes are, in terms of the achievable 

level of visual coding quality, the preferred means to enforce 

these constraints [1].  Two-pass RC solutions, when encoding 

a certain motion picture sequence or subset thereof, employ a 

first (typically fast) analysis pass in which preliminary frame-

wise coding statistics are collected for the full range of frames 

followed by a second (typically slower) final pass performing 

actual rate-distortion (R-D) optimized picture encoding, with 

imposed rate constraints derived from the first-pass data. 

Since the ultimate receiver of the compressed video signal 

catalogs is the human visual system, perceptually motivated 

visual quality assessment (VQA) methods are generally used 

to quantify the visual coding quality of the bit streams result-

ing from RC assisted encoding runs.  Moreover, to achieve a 

predefined level of quality of experience (QoE) of the videos 

given the bit-rate constraints determined a-priori, the psycho-

visual VQA models are frequently incorporated as perceptual 

distortion measures into the RC video encoders [2] – [5].  The 

objective is to achieve, across the given set of video frames, a 

consistent VQA score with little variance between frames [1], 

[2] as well as a visually optimal tradeoff between mean and/or 

maximum bit rate and average VQA score. Finally, as with all 

two-pass and single-pass RC methods, the rate resulting from 

final-pass encoding should closely match the target rate. 

 

A. Related Work 

In most RC methods, statistical models are used to formu-

late the relationship between the encoding parameters, e. g., 

the quantization parameter (QP) and Lagrange multiplier (�), 

and the actual bit rate R.  Given a second-pass target bit count 

rf, determined for some frame f  based on first-pass statistics, 

and the overall rate requirements, these encoding parameters 

are chosen using the RC model, either per picture (frame-level 

RC) or sub-area (block-level RC).  One of the best performing 

models, especially with modern video coding standards such 

as High Efficiency Video Coding (HEVC) [7], [8] or Versatile 

Video Coding (VVC) [9], [10], is the R-� model, where Lag-

range value �f  is calculated from rf  using a hyperbolic model: 

 �� = � ∙ ���, (1) 

with � and � being the model parameters [3] – [5], which are 

often refined over time as the final-pass encoding progresses. 

A similarly behaving quadratic model, yielding slightly better 

R-D performance, has recently been devised for Intra frames: 

 �� = − 
	∙	�	��	�	�
�� , (2) 

where � and � are the continuously updated parameters [6]. 

 

B. Motivation 

The RC models of (1) and (2), although performing well 

on typical input video material, were found to be difficult to 

integrate into modern video encoders in terms of stable choice 

of their two parameters for input sequences with strongly or 

rapidly varying R-D statistics.  This behavior can be attributed 

to the fact that two parameters must be updated and stabilized 

simultaneously.  In addition, the combination of two-pass RC 

and direct perceptual encoding optimization controlled by a 

low-complexity psycho-visual model has rarely been studied. 

In fact, the authors are only aware of the work by Wang et al. 

[2], [11] and Yuan et al. [12], utilizing the structural similarity 

measure (SSIM) [13] as a visually motivated distortion model 

for “perceptual R-D optimization” during two-pass RC video 

coding.  The other works previously referenced in this section 

only aim for indirect visual optimization by adjusting the final 

RC pass to result in relatively constant per-frame VQA scores. 

 

C. Paper Outline 

This paper proposes two new approaches for two-pass RC 

operation in fast HEVC or VVC encoders. The first, described 

in Sec. II, is the usage of a simple and implementation friendly 

two-step R-QP model instead of the R-� models (1) or (2), in 

order to simplify the encoder integration and to stabilize the 

RC behavior on “difficult” videos.  The second, introduced in 

Sec. III, is the adoption of the low-complexity psycho-visual 

model of the XPSNR metric for perceptual R-D optimization 

during first and second-pass encoding as well as for improved 

scene cut detection.  Sec. IV outlines the conducted evaluation 

experiments and their results, and Sec. V concludes the paper. 



II. A TWO-STEP R-QP MODEL FOR TWO-PASS RC 

An alternative to the R-� model for RC is described in the 

following.  For reasons of brevity, the variable bit rate (VBR) 

use case adopted in streaming applications is emphasized and 

mostly broadcasting centric constant bit rate (CBR) use cases, 

with their need to enforce stricter rate limits, are ignored. 

The motivation for the development of an alternative, yet 

simple RC model describing the relationship between R and 

the encoding parameters is based on the observation that, with 

modern codecs like HEVC or VVC, the overall rate resulting 

from encoding with a given overall QP and � increases consi-

derably when QP and � fall below a certain threshold.  Above 

this threshold, however, the logarithm of the rate change ap-

pears to be almost linearly related to QP and �.  Table I illu-

strates this observation on CTC coding results [14] collected 

using the VVC reference software encoder, VTM 12.1 [15]. 

Note that the resulting bit rates decrease with increasing base 

QP (since the QP value is proportional to the quantizer’s step 

size) and that, for the All Intra case, UHD sequence Campfire 

was excluded from the UHD results due to outlier behavior. 

From Table I it can be observed that, when reducing the 

base QP from 37 to 32 or from 32 to 27, the change in rate is 

a relatively consistent factor between 1.7 and 1.9 for All Intra 

(AI) and between 1.9 and 2.1 for Random Access (RA) coded 

content.  When reducing the base QP from 27 to 22, however, 

the rate increases faster, especially for UHD and HD coding. 

This growth in the rate change factor can be attributed to the 

more prominent presence of film grain or camera sensor noise 

in high-resolution video recordings – the closer the resolution 

is to the physical limits of the camera optics and acquisition 

device, the greater the amount of noise is in a given pixel area. 

Below a base QP of roughly 25, this noise leads to a greater 

variance in the video coder’s prediction error and, thereby, to 

many more residual transform coefficients being quantized to 

nonzero, even when reducing the QP in relatively small steps. 

 

A. First Part: QP Derivation for Low Rates 

The observed stronger rate change at high target rates than 

at lower target rates leads to the conclusion that a RC model 

comprising two parts, with the second part applied only when 

the result of the first part falls below a threshold, is desirable. 

Hence, a two-step R-QP model with a corrective second step, 

simplified to be easily implementable in fixed-point arithme-

tic, was devised. The first part of that R-QP model is given by 

 

 ���� = ��� − ���� ∙ �max�1;	���! ∙ log% &��'
��(, (3) 

 
where ���  and ���� are the integer first-pass and preliminary 

second-pass QP values, respectively, while �� and ��� hold the 

resulting first-pass and target second-pass bit counts, respec- 
 

TABLE I.  Rate ratios R(QP) /R(QP+5) resulting from VVC encoding 

with given base QP, geometrically averaged for each CTC class [16]. 

 
 Base All Intra   Random Access  

QP UHD (A½) HD (B) SD (C) UHD (A½) HD (B) SD (C) 

22 3.148 2.252 1.724 2.584 2.832 2.217 

27 1.787 1.893 1.747 2.007 2.138 2.067 

32 1.744 1.856 1.828 1.902 2.001 1.972 

TABLE II.  Accuracy of second-pass QP estimator of (3) for Random 

Access, with clow = 105/128 and base QPs from Tab. I as ground truth. 

 

Ground First-Pass QPbase  = 32 First-Pass QPbase  = 37 

 Truth UHD (A½) HD (B) SD (C) UHD (A½) HD (B) SD (C) 

22 20.98 19.94 21.81 20.52 19.04 21.15 

27 27.34 26.91 27.14 27.36 26.54 26.88 

32 32.00 32.00 32.00 32.37 32.01 32.11 

37 36.30 36.64 36.55 37.00 37.00 37.00 

 

tively, for frame f.  A very close fit to the low-rate QP = 27, 32 

RA data of Table I is obtained using clow ≈ 0.82, as tabulated 

in Table II for first-pass QPbase
 values of 32 and 37.  It is worth 

noting, in this regard, that the choice of the base QP value for 

the first coding pass, providing the frame-wise QPf, rf values 

required for the final bit allocation in the second coding pass, 

affects both accuracy and runtime (i. e., complexity overhead) 

of the RC encoding process, since higher QP values decrease 

the encoder runtime over lower values.  In initial experiments, 

a good tradeoff was reached by the following QP assignment: 

 

 ��*+,- = round 240 − �5678∙%9:8
;∙< ∙ =>?@AB>

C88888D, (4) 

 

where Rtarget is the overall user-specified target bit rate in bps 

and W and H are the input video width and height, respectively. 

For typical target rates between about 400 kbps and 40 Mbps 

for UHD, or a quarter of these rates for HD content, (4) results 

in reasonably accurate first-pass base QPs between 39 and 31. 

 

B. Second Part: QP Correction for High Rates 

Table II illustrates that, when rounding the output of (3) to 

integer, the estimated base QPs match the ground-truth QPbase 

data from Table I for 17 out of the 18 low/medium-rate cases 

(mismatches are colored blue) and are, thus, very accurate. At 

the very high rates (top row), however, model (3) consistently 

underestimates the actual QP because of the steeper increase 

in rate noted earlier. Therefore, a second corrective part to the 

R-QP model is required.  An easily implementable solution is 

 

 ����� = round E���� + �GHIG ∙ max�0;	��,J+KJ − ����!L, (5) 

 

where QPstart is the correction threshold and 0 ≤ chigh ≤ 1 serves 

as a parameter to control the strength of the correction.  Figure 

1 shows the effect of varying chigh when QPstart is kept constant. 

Using QPstart = 24 and with chigh = 0.5 for (U)HD and 0.25 for 

SD, QP 22 is now reached for all 6 high-rate cases in Table II. 

 

 

Figure 1.  Effect of corrective R-QP step (5) on preliminary second-

pass QP' obtained via (3).  QPstart = 24 is fixed, chigh (abbr. c) is varied. 



In summary, the above two-pass RC model is used as follows: 
 

1. Perform a first-pass fixed-QP encoding, with a base QP of ��*+,- as specified by the empirically derived assignment 

rule of (4) and with frame-wise QPf  and �f values derived 

therefrom, e. g., as defined for RA encoding in [15], [16]. 

Store the resulting first-pass bit consumption rf  for each f. 

2. Perform the second-pass varying-QP encoding with a pre-
liminary ��*+,-�  as specified in (6) which is then corrected 

similarly to ���� using (5), resulting in ��*+,-�� .  For each f, 

obtain ����� via (3) and (5) using the first-pass ���  and ��. 

3. In the R-� models, the frame-wise second-pass Lagrange 
values ���� are determined directly and the associated ����� 
values are derived therefrom.  In the R-QP model, the ����� 
are determined directly, as in step 2, and the ���� values are 

derived, using the first-pass ��, as ���� = �� ∙ 2(OP�''QOP�	 )/5
. 

This �-QP relationship is derived in detail in the appendix. 

 ��*+,-� = ��*+,- − ���� ∙ T��*+,- ∙ log% &=>?@AB>	∙	U
�VW	∙	∑ ��� (, (6) 

where F is the total frame count and fps is the frame rate in 

Hz.  The choice of r'f  for each f  is discussed further in Sec. IV. 

III. PERCEPTUAL R-D OPTIMIZATION USING XPSNR 

In [17], a low-complexity VQA measure termed XPSNR, 

representing a generalization and extension of the traditional 

peak signal-to-noise ratio (PSNR), was proposed. The core of 

the XPSNR measure is a psycho-visually inspired, simplified 

spatiotemporal sensitivity model specified locally, for disjoint 

areas, or blocks B, of each input picture P of bit depth BD, as 

 YZ = �
[\]^

[_      with     �[`Ha = 2%bcQd ∙ �5678∙%9:8

;∙< , (7) 

where k is the block index and �[Z  is a visual activity given by 

 �[Z = max &�eH% ; 	E 9
7fg ∑ |ℎ,[k, m]| + 2|ℎJ[k, m]|[o,p]∈b_ L%( (8) 

for each luminance-channel block rZ ∈  Pf.  The definitions of �eH, ℎ,, and ℎJ are provided in [17] and omitted here for bre-

vity and N² is the number of picture samples in each block. A 

low computational complexity is reached because the spatial 

high-pass operator ℎ, and temporal high-pass operator ℎJ use 

very simple fixed-point operations, and the square-root in the 

calculation of YZ  cancels the squaring operations in (8) [18]. 

 

A. Perceptual R-D Optimization 

The XPSNR model was explicitly specified to facilitate a 

simple implementation into modern image and video codecs. 

 s = round 2128 ∙ � ;∙<
5678∙%9:8D, (9) 

in particular, was chosen to align the B with the largest coding 

blocks (coding tree block, CTB) so that all boundaries of each 

CTB are aligned with those of the collocated visual sensitivity 

blocks.  In the case of VVC, this means that one and four YZ 

are calculated per CTB for UHD and HD input, respectively. 

This convenient parametrization allows for the YZ  to be used 

as perceptual weights during bit allocation for R-D optimized 

encoding, as described in [19] and summarized hereafter. 

Let distortion Dk be the sum of squared errors (SSE) or, as 

adopted more frequently, the mean squared error (MSE), with 

 

 minv_
wZ(vZ) + ��xZ(vZ)    for all y in coding order (10) 

constituting the (approximate) block-wise R-D encoding opti-

mization problem regarding the block coding parameters vZ, 

when any dependencies between blocks are ignored.  Here, �f 

is an overall Lagrange multiplier for the given frame which is 

associated with that frame’s quantization parameter QPf.  It is 

shown in [19] that (10) can be turned into a perceptual block-

wise R-D optimization problem by local distortion weighting: 

 

 minv_
YZwZ(vZ) + ��xZ(vZ) ⇔ minv_

wZ(vZ) + �ZxZ(vZ) (11) 

with block-wise Lagrange multiplier �Z = �f/YZ.  Hence, (7) 

can be used directly to locally adapt �f and, thereby, QPf, and 

this change is all that is required to achieve visually improved 

encoding; all other block coding operations can stay the same. 

 

B. Combination with Two-Pass RC 

Having shown how traditional block-wise R-D optimized 

encoding based on SSE or MSE can be generalized by means 

of block-wise weighting, the choice of Lagrange and quanti-

zation parameter for each k in each RC encoding pass remains 

to be made.  Clearly, the XPSNR visual sensitivity weighting 

of (7), as a model of human vision, is a good choice for YZ  in 

(11). It is, therefore, proposed to let the first RC encoding pass 

operate with the configuration outlined in [17], [19], namely: 

• Perform first-pass R-D optimized encoding as in step 1 of 

Sec. II, but with the QPf  and �f  parameters adapted per k 

(i. e., CTB, or quarter of CTB for HD or smaller input) as 
 

��Z = ��� − round�3 ∙ log%(YZ)!,        �Z = |�
}_.        (12) 

 

The second RC coding pass can then be applied analogously: 

• Perform the second-pass variable-QP encoding according 

to steps 2 and 3 of Sec. II, but with local adaptation of the ����� and ���� for each k.  Since YZ  is codec agnostic due to 

its sole dependence on the input images P, it follows that 
 

��Z�� = ����� − round�3 ∙ log%(YZ)!,      �Z�� = |�''
}_.       (13) 

 

Note that, aside from R-D optimization, YZ  can be employed 

to detect sudden scene changes or camera switches, which is 

beneficial in RC coding since prior knowledge of changes in 

pixel value statistics can help stabilize the temporal RC para-

meter refinement (see also Sec. I and IV).  The temporal high-

pass component of the XPSNR model [17], [20], reflected by ℎJ in (8), causes an increase in visual activity on consecutive 

pictures Pf–1, Pf with significantly different content, such as at 

scene cuts.  Defining a picture-wise mean luma visual activity 
 

  �[� = max &�eH% ; 	E 9
7;< ∑ |ℎ,[k, m]| + 2|ℎJ[k, m]|[o,p]∈P� L%( (14) 

for each frame f, instead of each block k, the simple condition 



 �[� > 8 ∙ �[�Q9 (15) 

accurately identifies cuts, i. e., f with changing characteristics. 

IV. IMPLEMENTATION AND EVALUATION 

The visually optimized two-pass RC method proposed in 

Secs. II and III was implemented into version 1.0.0 of VVenC, 

an open VVC encoder [21], and tested in RA configuration. A 

GOP 

1 size of 32 and the non-normative temporal filtering tool 

was used, as in [15], [16].  XPSNR based visual QP adaptation 

(QPA), including the chroma extension of [19], was allowed. 

 

A. RC Behavior in Second Coding Pass 

After the first RC pass, the sets of collected frame coding 

statistics {QP, �, r, �[}f  are sorted in display order, and scene 

changes are detected according to Sec. III.B.  Using a value of 

 �GHIG = 9
6 ∙ max�0; 	round�log% �! − 7!, (16) 

which was found to be a better overall fit for HD input 2 than 

the constant mentioned in Sec. II.B, ��*+,-��  is determined, and 

the second-pass per-frame target bit counts r'f  are initialized as 

 �̂� = round &�� ∙ =>?@AB>	∙	U
�VW	∙	∑ ��� (, (17) 

where the ratio by which rf  is scaled is already available from 

(6). Then, before final encoding of each frame, �̂�  is refined to 

 ��� = max &1;	�̂� + �∑ �̂� − �����∈� ! ∙ � ∙ ��
��( (18) 

to better match the target bit rate as the encoding progresses, 

where C is the set of all frames already encoded in the second 

pass and ���� is the final bit consumption of each frame c in C. 

Constant d equals 1 for all f  in the last encoded GOP, else 0.5. 

gf  is the sum of all bits r in the GOP to which f  belongs.  With 

(16) – (18), the combination of steps 2 and 3 of Sec. II and the 

visual optimization of Sec. III can now be applied; see func-

tion picInitRateControl( ) in file EncGOP.cpp of [21] for details. 

 

B. Objective Evaluation (BD-Rate) 

Bjøntegaard Delta-rate (BD-rate) statistics were compiled 

according to [22], using JVET’s CTC sequences for SDR [16] 

(with the UHD coding extended to 10 seconds for more repre-

sentative results) and Fraunhofer HHI’s public Berlin test set 

[23].  Only VTM’s single-pass RC could be tested for compa-

rison since it is the only other open RC implementation com-

patible with GOP size 32 as of June 1, 2021 [24], [25].  VVenC 

was operated with and without perceptual optimization and in 

preset slow which, in terms of fixed-QP coding efficiency, is 

close to VTM [26].  For each of the three encoder conditions, 

the rates resulting from fixed-QP CTC-like coding were used 

as Rtarget, and rate accuracy was measured as in [6], [11]. 

The BD-rate results provided in Table III, averaged across 

YUV components and video class, illustrate that the two-pass 

RC proposal in VVenC approaches the efficiency of the fixed-

QP reference quite closely, with or without QPA.  The error in 

rate accuracy was just 0.5 % on average.  Using the single-pass 

RC method in VTM, in comparison, causes a notable BD-rate 

loss of 5 – 14 %.  This, effectively, makes VVenC with RC out-

perform VTM with RC at a fraction of the runtime (9 – 10 %). 

1 group of pictures, 2 on larger training set excluding the CTC sequences 

TABLE III.  BD-rate results of RC methods.  Timing relative to VTM. 

 

Resolution VTM 12, no QPA VVenC, no QPA VVenC, vis. QPA

 Class PSNR Runtime PSNR Runtime XPSNR Runtime 

 UHD A½ 11.2% 97.7% 0.10% 9.60% 0.57% 9.61% 

 UHD HHI 9.13% 101% 2.30% 9.12% 4.30% 10.1% 

 HD B 6.31% 105% 0.54% 9.34% 1.36% 9.50% 

 HD HHI 14.0% 109% 1.72% 9.99% 2.47% 11.1% 

 SD  C 4.66% 102% 0.23% 10.1% 0.51% 10.5% 

 

C. Subjective Evaluation (Visual Testing) 

According to formal visual tests conducted between Sep-

tember 2020 and May 2021, VVenC with activated perceptual 

optimization outperforms VTM in visual quality at moderate 

and high bit rates in RA configuration, while operating more 

than 100 times faster [27], [28].  An informal visual check was 

carried out by the present authors to assess whether updated 

VVenC encodings made with the two-pass RC proposal, rate 

matched to the VTM encodings, perform comparably.  It was 

found that the visual quality advantage of VVenC over VTM 

could also be observed with the RC encodings, and no signifi-

cant differences between VVenC with and without RC (when 

both variants exhibit the rates used in [27], [28]) were visible. 

V. SUMMARY AND CONCLUSION 

This paper introduced the two-pass rate control algorithm 

integrated into version 1.0 of VVenC, an open VVC encoder. 

It described the underlying two-step R-QP model, devised for 

simple yet numerically stable operation, as well as the combi-

nation with perceptually R-D optimized coding, for improved 

(i. e., visually stable) subjective quality.  Experimental evalua-

tion against VTM, the VVC reference encoder, confirmed the 

runtime and visual quality advantage of VVenC, without and 

with rate control enabled.  Future work will focus on improve-

ments to (16) – (18) and adaptations for single-pass operation. 

APPENDIX: RELATIONSHIP BETWEEN � AND QP 

Using high-rate approximations, the relationship between � and the respective quantization step size ∆ can be derived as 

 � ∝ ∆% (A.1) 

for all MPEG/ITU-T video codecs since AVC [29], which was 

verified experimentally.  Having the approximate relationship 

 ∆	∝ 2OP/: (A.2) 

and disregarding rounding, combining (A.1) and (A.2) yields 

 �� − 3 ∙ log%(�) = const, (A.3) 

see also [19].  If the QP is varied by a delta dQP, it follows that 

 �� + ��� − 3 ∙ log%(� ∙ ��) = const, (A.4) 

i. e., additively changing the logarithm-domain QP requires a 

corresponding multiplicative change of the associated linear-

domain Lagrange value.  Solving (A.4) for �� via (A.3) yields 
 

 �� = 9
| ∙ 2�������^���>

� = 9
| ∙ 2���

� ���Ig(|) = 2���
� , (A.5) 

 

which completes the derivation of how � must be scaled when 

QP is modified, in order for constraint (A.3) to stay enforced. 
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